Skip to main content

Advertisement

Log in

Development of electrochemical biosensor based on CNT–Fe3O4 nanocomposite to determine formaldehyde adulteration in orange juice

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

An electrochemical biosensor was developed to determine formaldehyde (HCHO) adulteration commonly found in food. The current responses of various electrodes based on multiwalled carbon nanotubes (CNTs) and synthesized nanocomposite (CNT–Fe3O4) were measured using cyclic voltammetry. The nanocomposite based biosensor shows comparatively high sensitivity (527 µA mg/L−1 cm−2), low detection limit (0.05 mg/L) in linear detection range 0.05–0.5 mg/L for formaldehyde detection using formaldehyde dehydrogenase (FDH) enzyme. In real sample analysis, the low obtained RSD values (less than 1.79) and good recovery rates (more than 90%) signify an efficient and precise sensor for the selective quantification of formaldehyde in orange juice. The developed biosensor has future implications for determining formaldehyde adulteration in citrus fruit juices and other liquid foods in agri-food chain to further resolve global food safety concerns, control unethical business practices of adulteration and reduce the widespread food borne illness outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed KMF, Hafez RS, Morgan SD, Awad AA (2015) Detection of some chemical hazards in milk and some dairy products. Afr J Food Sci 9:187–193

    Article  CAS  Google Scholar 

  • Ali MA, Singh C, Mondal K, Srivastava S, Sharma A, Malhotra BD (2016) Mesoporous few-layer graphene platform for affinity biosensing application. ACS Appl Mater Interfaces 8:7646–7656

    Article  CAS  PubMed  Google Scholar 

  • Azizi SN, Ghasemi S, Amiripour F (2016) Nickel/P nanozeolite modified electrode: a new sensor for the detection of formaldehyde. Sens Actuator B Chem 227:1–10

    Article  CAS  Google Scholar 

  • Bhardwaj H, Singh C, Kumar Pandey M, Sumana G (2016) Star shaped zinc sulphide quantum dots self-assembled monolayers: preparation and applications in food toxin detection. Sens Actuators B Chem 231:624–633

    Article  CAS  Google Scholar 

  • Brown AP, Anson FC (1977) Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface. Anal Chem 49(11):1589–1595. https://doi.org/10.1021/ac50019a033

    Article  CAS  Google Scholar 

  • Das M, Dhand C, Sumana G, Srivastava AK, Nagarajan R, Malhotra BD (2012) Electrophoretically fabricated core-shell CNT-DNA biowires for biosensing. J Mater Chem 22:2727–2732

    Article  CAS  Google Scholar 

  • Dhyani H, Ali MA, Pandey MK, Malhotra BD, Sen P (2012) Electrophoretically deposited CdS quantum dots based electrode for biosensor application. J Mater Chem 22:4970–4976

    Article  CAS  Google Scholar 

  • Ding B, Wang H, Tao S, Wang Y, Qiu J (2016) Preparing electrochemical active hierarchically porous carbons for detecting nitrite in drinkable water. RSC Adv 6:7302–7309

    Article  CAS  Google Scholar 

  • European Food Safety Authority C (2007) Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to use of formaldehyde as a preservative during the manufacture and preparation of food additives. EFSA 5:415. https://doi.org/10.2903/j.efsa.2007.415

    Article  Google Scholar 

  • Fayemi OE, Adekunle AS, Ebenso EE (2017) Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode. Sens Biosens Res 13:17–27

    Google Scholar 

  • Fischer MJE (2010) Amine coupling through EDC/NHS: a practical approach. Surface Plasmon Resonan Methods Protoc 8:55–73. https://doi.org/10.1007/978-1-60761-670-2_3

    Article  CAS  Google Scholar 

  • Goon S, Bipasha M, Islam MS, Hossain MB (2014) Fish marketing status with formalin treatment in bangladesh. IJPHS3:95-100. ISSN:2252-8806. https://media.neliti.com/media/publications/7179-EN-fish-marketing-status-with-formalin-treatment-in-bangladesh.pdf

  • Han R, Li W, Pan W, Zhu M, Zhou D, Li F-s (2014) 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Sci Rep 4. https://doi.org/10.1038/srep07493

  • Hariani PL, Faizal M, Setiabudidaya D (2013) Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. IJESD 4:336. ISSN: 2010-0264. http://eprints.unsri.ac.id/id/eprint/2708

  • Jeong H-S, Chung H, Song S-H, Kim C-I, Lee J-G, Kim Y-S (2015) Validation and determination of the contents of acetaldehyde and formaldehyde in foods. Toxicol Res 31:273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and Y-Fe2O3 particles. Chem Mater 8:2209–2211

    Article  CAS  Google Scholar 

  • Khataee A, Lotfi R, Hasanzadeh A, Iranifam M (2016) A simple and sensitive flow injection method based on the catalytic activity of CdS quantum dots in an acidic permanganate chemiluminescence system for determination of formaldehyde in water and wastewater. Photochem Photobiol Sci 15:496–505

    Article  CAS  PubMed  Google Scholar 

  • Korpan YI, Gonchar MV, Sibirny AA, Martelet C, El’skaya AV, Gibson TD, Soldatkin AP (2000) Development of highly selective and stable potentiometric sensors for formaldehyde determination. Biosens Bioelectron 15:77–83

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni SA, Sawadh PS, Palei PK, Kokate KK (2014) Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceram Int 40:1945–1949

    Article  CAS  Google Scholar 

  • Kumar A, Goyal SK, Pradhan RC, Goyal RK (2015) A study on status of milk adulterants using in milk of district Varanasi. South Asian J Food Technol Environ 1:140–143. ISSN: 2394-5168(Print),2454-6445 (online). http://www.sweft.in/download/volumes1_:_issue_2__/Paper%207.pdf

  • Ling YP, Heng LY (2010) A potentiometric formaldehyde biosensor based on immobilization of alcohol oxidase on acryloxysuccinimide-modified acrylic microspheres. Sensors 10:9963–9981. https://doi.org/10.3390/s101109963

    Article  CAS  PubMed  Google Scholar 

  • Mabood F, Hussain J, Al Nabhani MMO, Gilani SA (2017) Detection and quantification of formalin adulteration in cow milk using near infrared spectroscopy combined with multivariate analysis. J Adv Dairy Res 5:2

    Article  Google Scholar 

  • Mathias PC, Hayden JA, Laha TJ, Hoofnagle AN (2014) Evaluation of matrix effects using a spike recovery approach in a dilute-and-inject liquid chromatography-tandem mass spectrometry opioid monitoring assay. Clin Chim Acta 437:38–42

    Article  CAS  PubMed  Google Scholar 

  • Mphuthi NG, Adekunle AS, Fayemi OE, Olasunkanmi LO, Ebenso EE (2017) Phthalocyanine doped metal oxide nanoparticles on multiwalled carbon nanotubes platform for the detection of dopamine. Sci Rep 7. https://doi.org/10.1038/srep43181

  • Nedellec V, Rabl A, Dab W (2016) Public health and chronic low chlordecone exposure in Guadeloupe, part 1: hazards, exposure-response functions, and exposures. Environ Health 15:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noor Aini B, Siddiquee S, Ampon K (2016) Development of formaldehyde biosensor for determination of formalin in fish samples; malabar red snapper (Lutjanus malabaricus) and longtail tuna (Thunnus tonggol). Biosensors 6:32. https://doi.org/10.3390/bios6030032

    Article  CAS  PubMed Central  Google Scholar 

  • Paul Joseph D, Venkateswaran C, Selva Vennila R (2010) Critical analysis on the structural and magnetic properties of bulk and nanocrystalline Cu–Fe–O. Adv Mater Sci Eng. https://doi.org/10.1155/2010/715872

  • Pramod P, Joseph STS, Thomas KG (2007) Preferential end functionalization of Au nanorods through electrostatic interactions. J Am Chem Soc 129:6712–6713

    Article  CAS  PubMed  Google Scholar 

  • Razzino CA, Sgobbi LF, Canevari TC, Cancino J, Machado SAS (2015) Sensitive determination of carbendazim in orange juice by electrode modified with hybrid material. Food Chem 170:360–365

    Article  CAS  PubMed  Google Scholar 

  • Sharma R et al (2013) Phase control of nanostructured iron oxide for application to biosensor. J Mater Chem B 1:464–474

    Article  CAS  Google Scholar 

  • Sherman DM, Waite TD (1985) Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. Am Miner 70:1262–1269

    CAS  Google Scholar 

  • Singh C et al (2013) Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sens Actuators B Chem 185:258–264

    Article  CAS  Google Scholar 

  • Wahed P, Razzaq MA, Dharmapuri S, Corrales M (2016) Determination of formaldehyde in food and feed by an in-house validated HPLC method. Food Chem 202:476–483

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Jiang S, Chen Y, Chen X, Zhao L, Zhang J et al (2012) Formaldehyde biosensor with formaldehyde dehydrogenase adsorped on carbon electrode modified with polypyrrole and carbon nanotube. Engineering 4(10):135. https://doi.org/10.4236/eng.2012.410B035

    Article  Google Scholar 

  • World Health O (2004) IARC monographs on the evaluation of carcinogenic risks to humans. Volume 88: formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol, vol 88. WHO, Geneva, Switzerland. ISBN: 9283212886

  • Zhang X et al (2015) Studies on the determination of formaldehyde in squid and bummalo. AER 46:20–22. file:///C:/Users/asus/Downloads/25846129%20(1).pdf

  • Zhu X, Liu M, Liu Y, Chen R, Nie Z, Li J, Yao S (2016) Carbon-coated hollow mesoporous FeP microcubes: an efficient and stable electrocatalyst for hydrogen evolution. J Mater Chem A 4:8974–8977

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely express gratitude to Director, CSIR-NPL, New Delhi, India for providing the research facilities and encouragement. We are grateful to Mr. Jai Singh and Mr. Dinesh CSIR-NPL for SEM and TEM measurements respectively. The sponsorship support received from ICAR-IARI, New Delhi, India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gajjala Sumana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1850 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, M., Bhardwaj, H., Pandey, M.K. et al. Development of electrochemical biosensor based on CNT–Fe3O4 nanocomposite to determine formaldehyde adulteration in orange juice. J Food Sci Technol 56, 1829–1840 (2019). https://doi.org/10.1007/s13197-019-03635-7

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-03635-7

Keywords

Navigation