Advertisement

Journal of Food Science and Technology

, Volume 55, Issue 5, pp 1726–1733 | Cite as

Non-starch contents affect the susceptibility of banana starch and flour to ozonation

  • Yana Cahyana
  • Rosmala Titipanillah
  • Efri Mardawati
  • Een Sukarminah
  • Tita Rialita
  • Robi Andoyo
  • Mohamad Djali
  • In-In Hanidah
  • Imas Siti Setiasih
  • Kejora Handarini
Original Article

Abstract

The properties of native flour and starch were compared and the changes in their properties were evaluated following ozonation at 100 and 200 ppm. X-ray diffraction analysis indicated that crystallinity index of both ozonated banana flour and starch decreased by 1.6%, B-type pattern of native banana flour and starch did not change following ozonation. The presence of higher amounts of non-starch components decreased the sensitivity of flour to the oxidation, as indicated by the lower carboxyl content compared to that of starch. The flour also required higher ozone concentration than starch to alter its properties, particularly pasting properties. Ozonation tended to increase peak, hold and final viscosity of both. A prominent change in the freeze thaw stability of both flour and starch following ozonation was the most encouraging result. Ozonation also improved the solubility of flour which was important to reduce cooking loss when applied in a range of food products. The solubility improvement in the flour might be linked to the formation of new binding following ozonation presumably involving protein present in the granule surface.

Keywords

Ozone Banana Flour Starch XRD Pasting properties 

Notes

Acknowledgements

This work was supported by financial sponsorship from Academic Leadership Grant, Universitas Padjadjaran, Indonesia.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. Agama-Acevedo E, Nuñez-Santiago MC, Alvarez-Ramirez J, Bello-Pérez LA (2015) Physicochemical, digestibility and structural characteristics of starch isolated from banana cultivars. Carbohydr Polym 124:17–24.  https://doi.org/10.1016/j.carbpol.2015.02.003 CrossRefGoogle Scholar
  2. An HJ, King JM (2009) Using ozonation and amino acids to change pasting properties of rice starch. J Food Sci 74:C278–C283.  https://doi.org/10.1111/j.1750-3841.2009.01109.x CrossRefGoogle Scholar
  3. Bai Y, Wu P, Wang K, Li C, Li E, Gilbert RG (2017) Effects of pectin on molecular structural changes in starch during digestion. Food Hydrocoll 69:10–18.  https://doi.org/10.1016/j.foodhyd.2017.01.021 CrossRefGoogle Scholar
  4. Bello-Pérez LA, Agama-Acevedo E, Sáyago-Ayerdi SG, Moreno-Damian E, Figueroa JDC (2000) Some structural, physicochemical and functional studies of banana starches isolated from two varieties growing in Guerrero, México. Starch Stärke 52:68–73.  https://doi.org/10.1002/(SICI)1521-379X(200004)52:2/3<68::AID-STAR68>3.0.CO;2-1 CrossRefGoogle Scholar
  5. Bi Y et al (2017) Molecular structure and digestibility of banana flour and starch. Food Hydrocoll 72:219–227.  https://doi.org/10.1016/j.foodhyd.2017.06.003 CrossRefGoogle Scholar
  6. Çatal H, İbanoğlu Ş (2014) Effect of aqueous ozonation on the pasting, flow and gelatinization properties of wheat starch. LWT Food Sci Technol 59:577–582.  https://doi.org/10.1016/j.lwt.2014.04.025 CrossRefGoogle Scholar
  7. Chan HT, Bhat R, Karim AA (2009) Physicochemical and functional properties of ozone-oxidized starch. J Agric Food Chem 57:5965–5970.  https://doi.org/10.1021/jf9008789 CrossRefGoogle Scholar
  8. Chan H-T, Fazilah A, Bhat R, Leh C-P, Karim AA (2012) Effect of deproteinization on degree of oxidation of ozonated starch. Food Hydrocoll 26:339–343.  https://doi.org/10.1016/j.foodhyd.2011.03.006 CrossRefGoogle Scholar
  9. Chattopadhyay S, Singhal RS, Kulkarni PR (1997) Optimisation of conditions of synthesis of oxidised starch from corn and amaranth for use in film-forming applications. Carbohydr Polym 34:203–212.  https://doi.org/10.1016/S0144-8617(97)87306-7 CrossRefGoogle Scholar
  10. Cheetham NWH, Tao L (1998) Variation in crystalline type with amylose content in maize starch granules: an x-ray powder diffraction study. Carbohydr Polym 36:277–284.  https://doi.org/10.1016/S0144-8617(98)00007-1 CrossRefGoogle Scholar
  11. Clifton P, Keogh J (2016) Starch. In: Encyclopedia of food and health. Academic Press, Oxford, pp 146–151.  https://doi.org/10.1016/B978-0-12-384947-2.00661-9
  12. Collado LS, Corke H (1999) Heat-moisture treatment effects on sweet potato starches differing in amylose content. Food Chem 65:339–346.  https://doi.org/10.1016/S0308-8146(98)00228-3 CrossRefGoogle Scholar
  13. Gozé P, Rhazi L, Pauss A, Aussenac T (2016) Starch characterization after ozone treatment of wheat grains. J Cereal Sci 70:207–213.  https://doi.org/10.1016/j.jcs.2016.06.007 CrossRefGoogle Scholar
  14. Hoover R (2010) The impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources. Crit Rev Food Sci Nutr 50:835–847.  https://doi.org/10.1080/10408390903001735 CrossRefGoogle Scholar
  15. Jane J, Wong K, McPherson AE (1997) Branch-structure difference in starches of a- and b-type x-ray patterns revealed by their naegeli dextrins. Carbohydr Res 300:219–227.  https://doi.org/10.1016/S0008-6215(97)00056-6 CrossRefGoogle Scholar
  16. Kaur B, Ariffin F, Bhat R, Karim AA (2012) Progress in starch modification in the last decade. Food Hydrocoll 26:398–404.  https://doi.org/10.1016/j.foodhyd.2011.02.016 CrossRefGoogle Scholar
  17. Klein B, Vanier NL, Moomand K, Pinto VZ, Colussi R, da Rosa Zavareze E, Dias ARG (2014) Ozone oxidation of cassava starch in aqueous solution at different ph. Food Chem 155:167–173.  https://doi.org/10.1016/j.foodchem.2014.01.058 CrossRefGoogle Scholar
  18. Kotiaho T, Eberlin MN, Vainiotalo P, Kostiainen R (2000) Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides. J Am Soc Mass Spectrom 11:526–535.  https://doi.org/10.1016/S1044-0305(00)00116-1 CrossRefGoogle Scholar
  19. Manthey FA (2016) Starch: sources and processing. In: Encyclopedia of food and health. Academic Press, Oxford, pp 160–164.  https://doi.org/10.1016/B978-0-12-384947-2.00658-9
  20. Misra NN, Kaur S, Tiwari BK, Kaur A, Singh N, Cullen PJ (2015) Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocoll 44:115–121.  https://doi.org/10.1016/j.foodhyd.2014.08.019 CrossRefGoogle Scholar
  21. Nara S, Komiya T (1983) Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starch Stärke 35:407–410.  https://doi.org/10.1002/star.19830351202 CrossRefGoogle Scholar
  22. Oladebeye AO, Oshodi AA, Amoo IA, Karim AA (2013) Functional, thermal and molecular behaviours of ozone-oxidised cocoyam and yam starches. Food Chem 141:1416–1423.  https://doi.org/10.1016/j.foodchem.2013.04.080 CrossRefGoogle Scholar
  23. Pal P et al (2016) Effect of nonthermal plasma on physico-chemical, amino acid composition, pasting and protein characteristics of short and long grain rice flour. Food Res Int 81:50–57.  https://doi.org/10.1016/j.foodres.2015.12.019 CrossRefGoogle Scholar
  24. Pukkahuta C, Varavinit S (2007) Structural transformation of sago starch by heat-moisture and osmotic-pressure treatment. Starch Stärke 59:624–631.  https://doi.org/10.1002/star.200700637 CrossRefGoogle Scholar
  25. Sandhu HPS, Manthey FA, Simsek S (2012) Ozone gas affects physical and chemical properties of wheat (Triticum aestivum L.) starch. Carbohydr Polym 87:1261–1268.  https://doi.org/10.1016/j.carbpol.2011.09.003 CrossRefGoogle Scholar
  26. Sasaki T, Kohyama K (2012) Influence of non-starch polysaccharides on the in vitro digestibility and viscosity of starch suspensions. Food Chem 133:1420–1426.  https://doi.org/10.1016/j.foodchem.2012.02.029 CrossRefGoogle Scholar
  27. Segat A, Misra NN, Cullen PJ, Innocente N (2015) Atmospheric pressure cold plasma (ACP) treatment of whey protein isolate model solution. Innov Food Sci Emerg Technol 29:247–254.  https://doi.org/10.1016/j.ifset.2015.03.014 CrossRefGoogle Scholar
  28. Wan A, Yu W (2012) Effect of wool fiber modified by ecologically acceptable ozone-assisted treatment on the pilling of knit fabrics. Text Res J 82:27–36.  https://doi.org/10.1177/0040517511414973 CrossRefGoogle Scholar
  29. Wattanachant S, Muhammad K, Mat Hashim D, Rahman RA (2003) Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties. Food Chem 80:463–471.  https://doi.org/10.1016/S0308-8146(02)00314-X CrossRefGoogle Scholar
  30. Yangilar F (2015) Effects of green banana flour on the physical, chemical and sensory properties of ice cream. Food Technol Biotechnol 53:315–323.  https://doi.org/10.17113/ftb.53.03.15.3851 CrossRefGoogle Scholar
  31. Zhang C, Kim J-Y, Lim S-T (2017) Relationship between pasting parameters and length of paste drop of various starches. LWT Food Sci Technol 79:655–658.  https://doi.org/10.1016/j.lwt.2016.11.004 CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2018

Authors and Affiliations

  • Yana Cahyana
    • 1
  • Rosmala Titipanillah
    • 1
  • Efri Mardawati
    • 2
  • Een Sukarminah
    • 3
  • Tita Rialita
    • 3
  • Robi Andoyo
    • 2
  • Mohamad Djali
    • 4
  • In-In Hanidah
    • 3
  • Imas Siti Setiasih
    • 4
  • Kejora Handarini
    • 1
  1. 1.Laboratory of Food Chemistry, Department of Food TechnologyUniversitas PadjadjaranBandungIndonesia
  2. 2.Laboratory of Food Engineering, Department of Food TechnologyUniversitas PadjadjaranBandungIndonesia
  3. 3.Laboratory of Food Microbiology, Department of Food TechnologyUniversitas PadjadjaranBandungIndonesia
  4. 4.Laboratory of Food Processing Technology, Department of Food TechnologyUniversitas PadjadjaranBandungIndonesia

Personalised recommendations