Chemical acetylation of nixtamalized maize flour and structural, rheological and physicochemical properties of flour, dough and tortillas

  • G. Arámbula-Villa
  • M. G. Figueroa-Rivera
  • R. Rendón-Villalobos
  • M. Mendoza-Elos
  • J. D. Figueroa-Cárdenas
  • R. Castanedo-Pérez
  • F. Rodríguez-González
Original Article
  • 63 Downloads

Abstract

Nixtamalized maize tortilla is a basic food for the Mexican population. It has high energy due to high starch, which may be modified to decrease its bioavailability and to produce changes in the characteristics of flours. For this research, nixtamalized maize flour was prepared and subjected to an acetylation chemical process, with and without prior hydrolysis. Raw maize flour, traditionally nixtamalized maize flour, acetylated-nixtamalized maize flour (AF) and acetylated-hydrolyzed nixtamalized maize flour (AHF) were prepared and evaluated. These flours were used for dough and tortilla preparation and analyzed for degree of substitution (DS), physicochemical properties, structure, thermal, rheological, morphological and texture properties. FTIR spectra and DS showed the presence of acetyl groups. AHF showed the highest value for water absorption index. The resistant starch increased 0.27 and 0.42% for AF and AHF samples. The gelatinization enthalpy (∆Hg) for AF was greater than other flours. AF tortillas showed better characteristics than the traditional ones and their consumption was recommended since showed better RS.

Keywords

Maize Tortilla Nixtamalization Modified starch Acetylated flour 

Notes

Acknowledgements

One of the authors (Figueroa-Rivera M.G.) thanks the National Council for Science and Technology (CONACyT) of Mexico for granting a scholarship for her doctoral studies. The authors thank to MS J. Juan Velez Medina for his technical assistance.

References

  1. AACC (2000) Approved methods of the American association of cereal chemists, 10a edn. American Association of Cereal Chemists, St. PaulGoogle Scholar
  2. Anderson RA, Conway HF, Pfeifer VF, Griffin EL Jr (1969) Gelatinization of corn grits by role and extrusion cooking. Cereal Sci Today 14(11):372–376Google Scholar
  3. Arámbula VG, Figueroa JDC, Martínez BF, Ordorica FCA, González HJ (1998) Milling and processing parameters for corn tortillas from extruded instant dry masa flour. J Food Sci 63(2):338–341CrossRefGoogle Scholar
  4. Arámbula-Villa G, González-Hernández J, Ordorica-Falomir CA (2001) Physicochemical, structural and textural properties of tortillas from extruded instant corn flour supplemented with various types of corn lipids. J Cereal Sci 33:245–252CrossRefGoogle Scholar
  5. Bello-Pérez LA, Agama-Acevedo E, Zamudio-Flores PB, Mendez-Montealvo G, Rodríguez-Ambriz SL (2010) Effect of low and high acetylation degree in the morphological, physicochemical and structural characteristics of barley starch. LWT Food Sci Technol 43:1434–1440CrossRefGoogle Scholar
  6. Billeb de Sinibaldi AC, Bressani R (2001) Características de cocción de once variedades de maíz. Archivos Latinoamericanos de Nutrición 51:86–94Google Scholar
  7. Cremer DR, Kaletunc G (2003) Fourier transform infrared microspectroscopic study of the chemical microstructure of corn and oat flour-based extrudates. Carbohydr Polym 52:53–65CrossRefGoogle Scholar
  8. Flores-Morales A, Jiménez-Estrada M, Mora-Escobedo R (2012) Determination of the structural changes by FTIR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydr Polym 87:61–68CrossRefGoogle Scholar
  9. Gaytán-Martínez M, Figueroa-Cárdenas JD, Vázquez-Landaverde PA, Morales-Sánchez E, Martínez-Flores HE, Reyes-Vega ML (2011) Caracterización fisicoquímica, funcional y química de harinas nixtamalizadas de maíz obtenidas por calentamiento óhmico y proceso tradicional. CyTA J Food 10(3):182–195CrossRefGoogle Scholar
  10. Institute SAS (1999) SAS® Procedures Guide, Ver 8. SAS Institute Inc., CaryGoogle Scholar
  11. Jheng-Hua L, Ciao-Ling P, You-Hong H, Harinder S, Yung-Ho C (2012) Influence of moisture content on the degradation of waxy and normal corn starches acid-treated in metanol. Food Hydrocoll 26:370–376CrossRefGoogle Scholar
  12. Lawal MV, Odeniyi MA, Itiola OA (2015) Material and rheological properties of native, acetylated, and pregelatinized forms of corn, cassava, and sweet potato starches. Starch/Stärke 67:964–975CrossRefGoogle Scholar
  13. Li-Chan ECY, Ismail AA, Sedman J, van de Voort FR (2002) Applications in Life, pharmaceutical and natural sciences. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 5. Wiley, Chichester, pp 3629–3662. ISBN: 978-0-471-98847-2Google Scholar
  14. Mondragón M, Bello-Pérez LA, Agama-Acevedo E, Betancur-Acona D, Peña JL (2004) Effect of cooking time, steeping and lime concentration on starch gelatinization of corn during nixtamalization. Starch/Starke 56:248–253CrossRefGoogle Scholar
  15. Mormoghtadaie L, Kadivar M, Shahedi M (2009) Effects of cross-linking and acetylation on oat starch properties. Food Chem 116:709–713CrossRefGoogle Scholar
  16. Murúa B, Beristain-Guevara CI, Martínez-Bustos F (2009) Preparation of starch derivatives using reactive extrusion and evaluation of modified starches as shell materials for encapsulation of flavoring agents by spray drying. J Food Eng 91:380–386CrossRefGoogle Scholar
  17. Noda T, Takahata Y, Sato T, Suda I, Morishita T, Ishiguro K (1998) Relationships between chain length distribution of amylopectin and gelatinization properties within the same botanical origin for sweet potato and buckwheat. Carbohydr Polym 37:153–158CrossRefGoogle Scholar
  18. Phillips DL, Liu H, Pan D, Corke H (1999) General application of Raman spectroscopy for the determination of level of acetylation in modified starches. Cereal Chem 76(3):439–443CrossRefGoogle Scholar
  19. Raina CS, Singh S, Bawa AS, Saxena DC (2006) Some characteristics of acetylated, cross-linked and dual modified Indian rice starches. Eur Food Res Technol 223:561–570CrossRefGoogle Scholar
  20. Ramírez-Wong B, Sweat VE, Torres PI, Rooney LW (1994) Cooking time, grinding, and moisture content effect on fresh corn masa texture. Cereal Chem 71(4):337–343Google Scholar
  21. Rendón VR, Bello PL, Osorio DP, Tovar J, Paredes LO (2002) Effect of storage in vitro digestibility and resistant starch content of nixtamal, masa and tortilla. Cereal Chem 79:340–344CrossRefGoogle Scholar
  22. Rincón AM, Bou RL, Aragoza LE, Padilla FC (2007) Efecto de la acetilación y oxidación sobre algunas propiedades del almidón de semillas de Fruto de pan (Artocarpus altilis). Archivos Latinoamericanos de Nutrición 57(3):287–294Google Scholar
  23. Ruiz-Gutiérrez MG, Quintero-Ramos A, Meléndez-Pizarro CO, Lardizábal-Gutierres D, Barnard J, Márquez-Melendez R (2010) Changes in mass transfer, thermal and physicochemical properties during nixtamalization of corn with and without agitation at different temperatures. J Food Eng 98:76–83CrossRefGoogle Scholar
  24. Rutenberg MW, Solarek D (1984) Starch derivatives: production and uses. In: Whistler RL, BeMiller JN, Paschall EF (eds) Starch: chemistry and technology. Academic Press, London, pp 312–388Google Scholar
  25. Salinas MY, Pérez PH (1997) Calidad nixtamalera-tortillera en maíces comerciales de México. Rev. Fitotecnia Mexicana 20:121–136Google Scholar
  26. SCFI. Secretaría de Comercio y Fomento Industrial (2002). Norma Oficial Mexicana: NOM-187-SSA1/SCFI-2002. Productos y Servicios. Masa, tortilla, tostada y harinas preparadas para su elaboración y establecimientos donde se procesaGoogle Scholar
  27. Singh J, Singh N (2001) Studies on the morphological, thermal end rheological properties of starch from some Indian potato cultivars. Food Chem 75:67–77CrossRefGoogle Scholar
  28. Singh J, Singh N, Saxena SK (2002) Effect of fatty acids on the rheological properties of corn and potato starch. J Food Eng 52:9–16CrossRefGoogle Scholar
  29. Singh N, Chawla D, Singh J (2004) Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chem 86:601–608CrossRefGoogle Scholar
  30. Singh J, Kaur L, McCarthy OJ (2007) Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications. Food Hydrocoll 21:1–22CrossRefGoogle Scholar
  31. Skoog DA, Holler FJ, Nieman TA (2001) Principios de Análisis Instrumental, 5a edn. McGraw Hill. Madrid, España, pp 435–461Google Scholar
  32. Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Analytical techniques in the science. Wiley, Chichester, p 208. ISBN: 978-0-470-85428-0Google Scholar
  33. Whistler RL, Daniel JR (1995) Carbohydrates. In: Fennema OR (ed) Food chemistry. Marcel Decker, New York, pp 69–137Google Scholar
  34. Würzburg OB (1964) Starch derivatives and modification. In: Whistler RL (ed) Methods in carbohydrate chemistry, IV. Academic Press, New York, pp 286–288Google Scholar
  35. Zambrano F, Camargo CRO (2001) Optimization of the conditions for the acid hydrolysis of cassava starch to obtain a fat replacer. Braz J Food Technol 4:147–154Google Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2018

Authors and Affiliations

  • G. Arámbula-Villa
    • 1
  • M. G. Figueroa-Rivera
    • 1
  • R. Rendón-Villalobos
    • 2
  • M. Mendoza-Elos
    • 3
  • J. D. Figueroa-Cárdenas
    • 1
  • R. Castanedo-Pérez
    • 1
  • F. Rodríguez-González
    • 2
  1. 1.Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalQuerétaroMexico
  2. 2.Centro de Desarrollo de Productos Bióticos-Instituto Politécnico NacionalYautepecMexico
  3. 3.Instituto Tecnológico RoqueCelayaMexico

Personalised recommendations