Abstract
The demand for gluten-free foods is certainly increasing. Interest in teff has increased noticeably due to its very attractive nutritional profile and gluten-free nature of the grain, making it a suitable substitute for wheat and other cereals in their food applications as well as foods for people with celiac disease. The main objective of this article is to review researches on teff, evaluate its suitability for different food applications, and give direction for further research on its applications for health food market. Teff is a tropical low risk cereal that grows in a wider ecology and can tolerate harsh environmental conditions where most other cereals are less viable. It has an excellent balance of amino acid composition (including all 8 essential amino acids for humans) making it an excellent material for malting and brewing. Because of its small size, teff is made into whole-grain flour (bran and germ included), resulting in a very high fiber content and high nutrient content in general. Teff is useful to improve the haemoglobin level in human body and helps to prevent malaria, incidence of anaemia and diabetes. The nutrient composition of teff grain indicates that it has a good potential to be used in foods and beverages worldwide. The high levels of simple sugars and α-amino acids as a result of breakdown of starch and protein, respectively, are essential for fermentation and beer making.
Similar content being viewed by others
References
Abraham B, Admasu A, Ogbai M (1980) Critical study of the iron content of teff (Eragrostis tef). Ethiop Med J 18:45–52
Ahmed ZS, Abd El-Moniem GM, Yassen AAE (1996) Comparative studies on protein fractions and amino acid composition from sorghum and pearl millet. Nahr 40:305–309
Aman P, Hesselman K, Tilly A (1985) The variation in chemical composition of Swedish barleys. J Cereal Sci 3:73–77
Anderson JW, Baird P, Davis RH, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205
Andrews T, Waterman H, Hillier V (1999) Blood gas analysis: a study of blood loss in intensive care. J Adv Nurs 30:85–857
Annibale B, Severi C, Chistolini A, Antonelli G, Lahner E, Marcheggiano A, Iannoni C, Monarca B, Delle FG (2001) Efficacy of gluten-free diet alone on recovery from iron deficiency anemia in adult celiac patients. Am J Gastroenterol 96:132–137
Asano K, Hashimoto N (1980) Isolation and characterization of foaming properties of beer. J Am Soc Brew Chem 38:129–137
Awadalkareem AM, Mustafa AI, El Tinay AH (2008) Protein, mineral content and amino acid profile of sorghum flour as influenced by soybean protein concentrate supplementation. Pak J Nutr 7:475–479
Awika JM, Rooney LW (2004) Sorghum phytochemicals and their potential impact on human health: review. Phytochem 65:1199–1221
Bamforth CW (1985) The foaming properties of beer. J Inst Brew 91:370–383
Bardella MT, Fredella C, Prampolini L, Molteni N, Giunta AM, Bianchi PA (2000) Body composition and dietary intake in adult celiac disease patients consuming a strict gluten-free diet. Am J Clin Nutr 72:937–939
Belay G, Tefera H, Tadesse B, Metaferia G, Jarra D, Tadesse T (2005) Participatory variety selection in the Ethiopian cereal tef (Eragrostis tef). Exp Agric 42:91–101
Belay G, Zemede A, Assefa K, Metaferia G, Tefera H (2009) Seed size effect on grain weight and agronomic performance of tef (Eragrostis tef (Zucc.) Trotter). Afr J Agric Res 4:836–839
Bishop LR (1930) The nitrogen content and quality of barley. J Inst Brew 36:352–369
Briggs DE (1998) Malts and malting. Blackie Academic and Professional, London
Buiatti S (2009) Beer composition: an overview. In: Preedy VR (ed) Beer in health and disease prevention. Academic, London, pp 213–225
Bultosa G (2007) Physicochemical characteristics of grain and flour in 13 tef (Eragrostis tef (Zucc.) Trotter) grain varieties. J Appl Sci Res 3:2042–2051
Bultosa G, Hall AN, Taylor JRN (2002) Physico-chemical characterization of grain tef (Eragrostis tef (Zucc.) Trotter) starch. Starch/Stärke 54:461–468
Bultosa G, Taylor JNR (2004) Teff. In: Wringley C, Corke H, Walker C (eds) Encyclopedia of grain science. Academic, Oxford, pp 281–289
Chatterjee SR, Verma NS, Gulati SC, Bakshi JS, Abrol YP (1975) Identification of barley strains with improved amino acid balance. Euphytica 24:725–730
Chen JX, Fei D, Kang W, Guo-ping Z (2006) Relationship between malt qualities and β-amylase activity and protein content as affected by timing of nitrogen fertilizer application. J Zhejiang Univ Sci 7:79–84
Clapperton JF (1971) Simple peptides of wort and beer. J Inst Brew 77:177–180
Costanza SH, deWet JMJ, Harlan JR (1980) Literature review and numerical taxonomy of Eragrostis tef (tef). Econ Bot 33:413–424
Dekking LS, Winkelaar YK, Koning F (2005) The Ethiopian cereal tef in celiac disease. N Engl J Med 353:1748–1749
Demissie A (2000) Teff genetic resources in Ethiopia. In: Tefera H, Belay G, Sorrells M (eds) Narrowing the rift: teff research and development. Debrezeit, Ethiopia, pp 27–31
Dickinson A (2002) Benefits of calcium and vitamin D: building and maintaining healthy bones. http://www.crnusa.org/benpdfs/CRN003benefits_calciumandD.pdf. Accessed 16 Oct 2011
Drost BW, Van der Berg R, Freijee FJM, Van der Velde EG, Hollemans M (1990) Flavor stability. J Am Soc Brew Chem 48:124–131
Dufour JP, Melotte L (1992) Sorghum malts for the production of a lager beer. J Am Soc Brew Chem 50:110–119
Dykes L, Rooney LW (2007) Phenolic compounds in cereal grains and their health benefits. Cereal Foods World 52:105–111
El-Alfy TS, Ezzat SM, Sleem AA (2011) Chemical and biological study of the seeds of Eragrostis tef (Zucc.) Trotter. Nat Prod Res doi:10.1080/14786419.2010.538924
Elisaf M, Milionis H, Siamopoulos K (1997) Hypomagnesemic hypokalemia and hypocalcemia: clinical and laboratory characteristics. Miner Electrol Metab 23:105–12
Ellis HJ, Doyle AP, Day P, Wieser H, Ciclitira PJ (1994) Demonstration of the presence of celiac-activating gliadin-like epitopes in malted barley. Int Arch Allergy Immunol 104:308–310
FAO (1970) Amino-acid content of foods and biological data on proteins. FAO nutrition studies no 24, Rome, Italy
FAO (1992) Maize in human nutrition. Rome, Italy
FAO (1993) Rice in human nutrition. Rome, Italy
FAO (1995) Sorghum and millets in human nutrition. FAO Food and Nutrition Series, No. 27, Rome, Italy
FAO/WHO (Joint) Food Standards Program (1994) Codex standard for “gluten-free foods”, Codex Standard 118–1981. Codex Alimentarius 4:100–103
Ferrier RJ (1992) Carbohydrate chemistry, volume 24: a review of chemical literature. Royal society of chemistry, London
Food and Nutrition Board, Inst Med (2002) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington DC
Gallagher E, Gormley TR, Arendt EK (2004) Recent advances in the formulation of gluten-free cereal-based products. Trends in Food Sci Technol 15:143–52
Gamboa PA, Ekris LV (2008) Teff: survey on the nutritional and health aspects of teff (Eragrostis tef). http://educon.javeriana.edu.co/lagrotech/images/patricia_arguedas.pdf. Accessed 20 June 2011
Gibson BR, Boulton CA, Box WG, Graham NS, Lawrence SJ, Linforth BST, Smart KA (2009) Amino acid uptake and yeast gene transcription during industrial brewery fermentation. J Am Soc Brew Chem 67:157–165
Glennie CW, Harris J, Liebenberg NVDW (1983) Endosperm modification in germinating sorghum grain. Cereal Chem 60:27–31
Gorinstein S, Zemser M, Vargas-Albores F, Ochoa JL, Paredes-Lopez O, Scheler C, Salnikowe J, Martin-Belloso O, Trakhtenberg S (1999) Proteins and amino acids in beers, their contents and relationships with other analytical data. Food Chem 67:71–78
Green PH, Rostami K, Marsh MN (2005) Diagnosis of celiac disease. Best Pract Res Clin Gastroenterol 19:389–400
Guerrant NB, Fardig OB (1947) The thiamine and riboflavin content of whole wheat, nonenriched and enriched flours and of breads made therefrom: two figures. J Nutr 34:523–542
Guido LF, Curto AF, Boivin P, Benismail N, Goncalves CR, Barros AA (2007) Correlation of malt quality parameters and beer flavor stability: multivariate analysis. J Agric Food Chem 55:728–733
Haard NF, Odunfa SA, Cherl-Ho Lee, Quintero-Ramírez R, Lorence-Quiñones A, Wacher-Radarte C (1999) Fermented cereals: a global perspective. FAO Agricultural Services Bulletin No. 138. Rome, Italy
Heinemann RJB, Fagundes PL, Pinto EA, Penteado MVC, Lanfer-Marquez UM (2005) Comparative study of nutrient composition of commercial brown, parboiled and milled rice from Brazil. J Food Compos Anal 18:287–296
Helbing J (2009) Konfokale laser scanning-mikroskopie und rasterelektronenmikroskopie zur beobachtung der mälzung verschiedener zerealien und pseudozerealien. Technische Universität München, Germany
Hidetoshi I (2001) The relationship between grain ripening and falling number in winter wheat seeds. Jpn J Crop Sci 70:373–378
Holt PR, Wolper C, Moss SF, Yang K, Lipkin M (2001) Comparison of calcium supplementation or low-fat dairy foods on epithelial cell proliferation and differentiation. Nutr Cancer 41:150–155
Hopman GD, Dekking EHA, Blokland MLJ, Wuisman MC, ZuijderduinWM KF, Schweizer JJ (2008) Tef in the diet of celiac patients in the Netherlands. Scand J Gastroenterol 43:277–82
Hug-Iten S, Handschin S, Conde-Petit B, Escher F (1999) Changes in starch microstructure on baking and staling of wheat bread. Lebensm Wiss Technol 32:255–260
Jane JL, Shen L, Wang L, Maningat CC (1992) Preparation and properties of small-particle cornstarch. Cereal Chem 69:280–283
Jansen GR, DiMaio LR, Hause NL (1962) Amino acid composition and lysine supplementation of teff. J Agric Food Chem 10:62–64
Jones M, Pierce JS (1964) Absorption of amino acids from wort by yeasts. J Inst Brew 70:307–315
Kashlan NB, Srivastava VP, Mohanna NA, Motawa YK, Mameesh MS (1991) The Proximate and elemental composition of wheat flour and major types of bread consumed in Kuwait. Food Chem 39:205–2010
Khoi BH, Dien LD, Lasztity R, Salgo A (1987) The protein and the amino acid composition of some rice and maize varieties grown in North Vietnam. J Sci Food Agric 39:137–143
Kleyn J, Hough J (1971) The microbiology of brewing. Ann Rev Microbiol 25:583–608
Köksel H, Edney MJ, Özkaya B (1999) Barley bulgur: effect of processing and cooking on chemical composition. J Cereal Sci 29:185–190
Kühbeck F, Back W, Krottenthaler M (2006) Release of long-chain fatty acids and zinc from hot zrub to wort. Monschr Brauwiss 59:67–77
Kunze W (2004) Technology brewing and malting, 3rd edn. VLB Berlin, Berlin
Leder I (2004) Sorghum and Millets, in cultivated plants, primarily as food sources. In: Füleky G (ed) Encyclopedia of life support systems (EOLSS). EOLSS Publishers, UK
Lee AR, Ng DL, Dave E, Ciaccio EJ, Green PH (2009) The effect of substituting alternative grains in the diet on the nutritional profile of the gluten-free diet. J Hum Nutr Diet 22:359–63
Lindeboom N, Chang PR, Tyler RT (2004) Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch/Stärke 56:89–99
Lukow OM, White NDG, Sinha RN (1995) Influence of ambient storage conditions on the bread making quality of two HRS wheats. J Stored Prod Res 31:279–289
MacGregor AW, Matsuo RR (1982) Starch degradation in endosperms of barley and wheat kernels during initial stages of germination. Cereal Chem 59:210–216
Magazoni F, Monteiro JB, Cardemil JM, Colle S (2010) Cooling of ethanol fermentation process using absorption chillers. Int J Thermodyn 13:111–118
Maheshu V, Priyadarsini DT, Sasikumar JM (2011) Effects of processing conditions on the stability of polyphenolic contents and antioxidant capacity of Dolichos lablab L. J Food Sci Technol doi:10.1007/s13197-011-0387-z
McCance RA, Widdowson EM, Morant T, Pringle WJS, Macrae TF (1945) The Chemical composition of wheat and rye and of flours derived therefrom. Biochem 39:214–222
McDonough CM, Rooney LW (2000) The millets. In: Kulp K, Ponte JG Jr (eds) Handbook of cereal science and technology. Marcel Dekker, New York, pp 177–201
McMurrough I, Madigan D, Kelly RJ (1996) The role of flavonoid polyphenols in beer stability. J Am Soc Brew Chem 54:141–148
Mengesha M (1966) Chemical composition of tef (Eragrostis tef) compared with that of wheat, barley and grain sorghum. Econ Bot 20:268–273
Molineaux L, Biru M (1965) Tef consumption, hookworm infestation, and hemoglobin levels: a preliminary report. J Health 51(1):1–5
Mosse J, Huet JC, Baudet J (1985) The Amino acid composition of wheat grain as a function of nitrogen content. J Cereal Sci 3:115–130
Narziss L, Back W (2009) Die bierbrauerei, band 2: die technologie der würzebereitung, achte, überarbeitete und ergänzte auflage. Weinheim, Germany
National Research Council (1996) Lost crops of Africa. Volume 1: grains. National Academy Press, Washington DC
Norat T, Riboli E (2003) Dairy products and colorectal cancer. a review of possible mechanisms and epidemiological evidence. Eur J Clin Nutr 57:1–17
Obilana AB (2003) Overview: importance of millets in Africa. http://www.afripro.org.uk/papers/Paper02Obilana.pdf. Accessed 20 July 2010
Okolo BN, Ezeogu LI, Uowuaxyi KE (1997) Amylolysis of sorghum starch influenced by cultivar, germination time and gelatinization temperature. J Inst Brew 3:371–376
Outtrup H (1989) Haze active peptides in beer. In: Proceedings of the 22nd congress of European Brewery Convention, Zurich, pp 609–616
Parker M, Umeta M, Faulks RM (1989) The Contribution of flour components to the structure of injera, an Ethiopian fermented bread made from tef (Eragrostis tef). J Cereal Sci 10:93–104
Perpète P, Santos G, Bodart E, Collin S (2005) Uptake of amino acids during beer production: the concept of a critical time value. J Am Soc Brew Chem 63:23–27
Phiaraise BPN, Wijngaard HH, Arendt EK (2005) The impact of kilning on enzymatic activity of buckwheat malt. J Inst Brew 111:290–298
Procopio S, Qian F, Becker T (2011) Function and regulation of yeast genes involved in higher alcohol and ester metabolism during beverage fermentation. Eur Food Res Technol 233:721–729
Qiang H, Yuanping L, Kai Y (2006) Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase. Food Chem 101:1178–1182
Renzetti S, Arendt EK (2009) Effects of oxidase and protease treatments on the bread making functionality of a range of gluten-free flours. Eur Food Res Technol 229:307–317
Riahi E, Ramaswamy HS (2003) Structural composition of cereal grains and legumes. In: Chakraverty A, Mujumdar AS, Raghavan GS, Ramaswamy HS (eds) Handbook of postharvest technology: cereals, fruits, vegetables, tea and spices. Marcel Dekker, New York, pp 1–16
Roosjen J (2007) Processing of teff flour. European patent specification, publication number: WO 2005/025319 (24.03.2005 Gazette 2005/12), European patent office. (http://www.abs-africa.info/uploads/media/Teff-PatentEP_1_646_287_B1_01.pdf). Accessed 05 Oct 2010
Roza JR, Wallin CE, Bamforth CW (2006) A comparison between instrumental measurement of head retention/lacing and perceived foam quality. Master Brew Assoc Am Tech Q 43:173–176
Rude RK, Kirchen ME, Gruber HE, Meyer MH, Luck JS, Crawford DL (1999) Magnesium deficiency-induced osteoporosis in the rat: uncoupling of bone formation and bone resorption. Magnes Res 12:257–567
Rudin AD (1957) Measurement of the foam stability of beers. J Inst Brew 63:506–509
Sablani SS (2009) Gelatinization of Starch. In: Rahman MS (ed) Food properties handbook. CRC press, USA, pp 287–320
Sanni LO, Ikuomola DP, Sanni SA (2001) Effect of length of fermentation and varieties on the qualities of sweet potato gari. In: Proceedings of the 8th triennial symposium of the international society for tropical root crops—Africa branch (ISTRC-AB), Ibadan, Nigeria, pp 208–211
Saturni L, Ferretti G, Bacchetti T (2010) The gluten-free diet: safety and nutritional quality: review. Nutr 2:16–34
Selinus R (1971) The traditional foods of the central Ethiopian highlands, research report no. 7, Scand Inst Afr Studies http://ethnomed.org/clinical/nutrition/the-traditional-foods-of-the-central-ethiopian. Accessed 02 Oct 2010
Seyfu K (1997) Teff (Eragrostis tef (Zucc.) Trotter): promoting the conservation and use of underutilized and neglected crops. Institute of plant genetics and crop plant research, International plant genetics resources institute, Rome, Italy
Shimelis AE, Meaza M, Rakshit S (2006) Physico-chemical properties, pasting behaviour and functional characteristics of flours and starches from improved bean (Phaseolus Vulgaris L.) varieties grown in East Africa. CIGR Ejournal 8:1–18
Shoup FK, Deyoe CW, Campbell J, Parrish DB (1969) Amino acid composition and nutritional value of milled sorghum grain products. Cereal chem 46:164–172
Shukla K, Srivastava S (2011) Evaluation of finger millet incorporated noodles for nutritive value and glycemic index. J Food Sci Technol doi:10.1007/s13197-011-0530-x
Steiner E, Arendt EK, Gastl M, Becker T (2011) Influence of the malting parameters on the haze formation of beer after filtration. Eur Food Res Technol 233:587–597
Suliburska J, Krejpcio Z (2011) Evaluation of the content and bioaccessibility of iron, zinc, calcium and magnesium from groats, rice, leguminous grains and nuts. J Food Sci Technol doi:10.1007/s13197-011-0535-5
Tadesse E (1969) Teff (Eragrostis tef): the cultivation, usage and some of the known diseases and insect pests, part I. Debre Zeit Agricultural Experiment Station Bulletin No. 60. Alemaya University of Agriculture, Dire Dawa, Ethiopia
Tatham AS, Fido RJ, Moore CM, Kasarda DD, Kuzmicky DD, Keen JN, Shewry PR (1996) Characterisation of the major prolamins of teff (Eragrostis tef) and finger millet (Eleusine coracana). J Cereal Sci 24:65–71
Taylor JRN, Schober TJ, Bean SR (2006) Novel food and non-food uses for sorghum and millets. J Cereal Sci 44:252–271
Teegarden D (2003) Calcium intake and reduction in weight or fat mass. J Nutr 133:249–251
Tefera H, Assefa K, Hundera F, Kefyalew T, Teklu Y, Gugsa L, Ketema S, Adnew T (2001) Progress of teff breeding research in Ethiopia. In: Tefera H, Belay G, Sorells M (eds) Narrowing the rift: teff research development. Ethiopian Agricultural Research Organization, Addis Ababa, pp 157–163
Tefera H, Ayele M, Assefa K (1995) Improved varieties of tef (Eragrostis tef) in Ethiopia, releases of 1970–1995. Research bulletin no 1. Debre Zeit Agricultural Research Center, Alemaya University of Agriculture, Debre Zeit, Ethiopia
Tester RF, Morrison WR (1990) Swelling and gelatinization of cereal starches. II. Waxy rice starches. Cereal Chem 67:558–563
Thompson T (2000) Folate, iron, and dietary fiber contents of the gluten free diet. J Am Diet Assoc 100:1389–1396
Tikkakoski S, Savilahti E, Kolho KL (2007) Undiagnosed celiac disease and nutritional deficiencies in adults screened in primary health care. Scand J Gastroenterol 42:60–65
Vaclavik VA, Christian EW (2008) Essentials of Food Science, 3rd edn. Springer science and Business media LLC, New York
Vallons KJR, Ryan LAM, Arendt EK (2011) Promoting structure formation by high pressure in gluten-free flours. LWT—Food Sci Technol 44:1672–1680
Vinning G, McMahon G (2006) Gluten-free grains: a demand-and-supply analysis of prospects for the Australian health grains industry. A report for the Rural Industries Research and Development Corporation, Australia
WHO (2003) Diet, nutrition and the prevention of chronic diseases. WHO technical report series no. 916, Geneva, Switzerland
Woffenden HM, Ames JM, Chandra S (2001) Relationships between antioxidant activity, colour, and flavor compounds of crystal malt extracts. J Agric Food Chem 49:5524–5530
Xu J, Bietz JA, Carriere CJ (2007) Viscoelastic properties of wheat gliadin and glutenin suspensions. Food Chem 101:1025–1030
Yetneberk S, de Kock HL, Rooney LW, Taylor JRN (2004) Effects of sorghum cultivar on injera quality. Cereal Chem 81:314–321
Yigzaw Y, Gorton L, Solomon T, Akalu G (2004) Fermentation of seeds of teff (Eragrostis tef), grass-pea (Lathyrus sativus), and their mixtures: aspects of nutrition and food safety. J Agric Food Chem 52:1163–1169
Zarnkow M, Almaguer C, Burberg F, Back W, Arendt EK, Kreisz S, Gastl M (2008) The use of response surface methodology to optimise malting conditions of teff (Eragrostis tef (Zucc.) Trotter) as a raw material for gluten free foods and beverages. World brewing congress, Honolulu, USA
Zarnkow M, Keßler M, Back W, Arendt EK, Gastl M (2010) Optimisation of the mashing procedure for 100 % malted proso millet (Panicum miliaceum L.) as a raw material for gluten-free beverages and beers. J Inst Brew 116:141–150
Zegeye A (1997) Acceptability of injera with stewed chicken. Food Qual Prefer 8:293–295
Zemel MB (2003) Role of dietary calcium and dairy products in modulating adiposity. Lipids 38:130–146
Acknowledgement
We would like to thank the Technical University of Munich for providing the required resources. We are also sincerely thankful to the Ethiopian Engineering Capacity Building Program (ECBP) for the financial support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gebremariam, M.M., Zarnkow, M. & Becker, T. Teff (Eragrostis tef) as a raw material for malting, brewing and manufacturing of gluten-free foods and beverages: a review. J Food Sci Technol 51, 2881–2895 (2014). https://doi.org/10.1007/s13197-012-0745-5
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13197-012-0745-5