Skip to main content
Log in

Thermal decomposition kinetics of jute fiber filled HDPE composites

  • Original Article
  • Published:
Journal of the Indian Academy of Wood Science Aims and scope Submit manuscript

Abstract

Natural fiber–plastic composites are being used for many light structural applications. The thermal behaviour is particularly important for applications where product is subjected to conditions which are above ambient temperatures like under the hood auto components, processes involving elevated temperatures like curing, reprocessing, or in case of fire damage. This paper discusses thermal decomposition kinetics of Jute reinforced High Density Polyethylene (HDPE). The thermal behaviour of jute fiber reinforced high density polyethylene composites was studied by thermogravimetric analysis. Jute reinforced HDPE composites exhibited sequential degradation of jute appearing at around 375 °C and that of HDPE at around 485 °C. Horowitz–Metzger and Coates–Redfern methods were used to evaluate kinetic parameters associated with thermal degradation of jute fiber filled composites. The result also showed that both jute and HDPE degrades in two distinct steps. Apparent activation energy of around 50 and 95 kJ/mol for jute and approximately 245 and 345 kJ/mol for HDPE was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Awal A, Ghosh SB, Sain M (2010) Thermal properties and spectral characterization of wood pulp reinforced bio-composite fibers. J Therm Anal Calorim 99(2):695–701

    Article  CAS  Google Scholar 

  • Chatterjee PK, Conrad CM (1968) Thermogravimetric analysis of cellulose. J Polym Sci Part A 1 Polym Chem 6(12):3217–3233

    Article  CAS  Google Scholar 

  • Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  CAS  Google Scholar 

  • Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett 4(5):323–328

    Article  CAS  Google Scholar 

  • Freeman ES, Carroll B (1958) The application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J Phys Chem 62(4):394–397

    Article  CAS  Google Scholar 

  • Friedman H (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry, application to a phenolic plastic. J Polym Sci Part C 6:183–195

    Article  Google Scholar 

  • Horowitz HH, Metzger G (1963) A new analysis of thermogravimetric traces. Anal Chem 35(10):1464–1468

    Article  CAS  Google Scholar 

  • Ingraham TR, Marier P (1964) Activation energy calculation from a linearly-increasing -temperature experiment. Can J Chem Eng 42:161–163

    Article  CAS  Google Scholar 

  • Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706

    Article  CAS  Google Scholar 

  • Li Y, Du L, Kai C, Huang R, Wu Q (2013) Bamboo and high density polyethylene composite with heat-treated bamboo fiber: thermal decomposition properties. BioResources 8(1):900–912

    Article  Google Scholar 

  • Monteiro SN, Calado V, Rodriguez RJS, Margem FM (2012) Thermogravimetric behavior of natural fibers reinforced polymer composites—an overview. Mater Sci Eng A 557:17–28

    Article  CAS  Google Scholar 

  • Ogah AO, Afiukwa JN, Englund K (2014) Characterization and comparison of thermal stability of agro waste fibers in bio-composites application. J Chem Eng Chem Res 1(2):84–93

    CAS  Google Scholar 

  • Rainvalle ED (1960) Special functions. Macmillan, New York

    Google Scholar 

  • Sinfronio FSM, Santos JCO, Pereira LG, Souza AG, Conceiçăo MM, Fernandes VJ Jr, Fonseca VM (2005) Kinetic of thermal degradation of low-density and high-density polyethylene by non-isothermal thermogravimetry. J Therm Anal Calorim 79(2):393–399

    Article  CAS  Google Scholar 

  • Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT (2008) Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Expr Polym Lett 2(2):133–146

    Article  CAS  Google Scholar 

  • Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93(1):90–98

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonali Karmarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmarkar, S., Shashidhara, G.M. Thermal decomposition kinetics of jute fiber filled HDPE composites. J Indian Acad Wood Sci 15, 33–40 (2018). https://doi.org/10.1007/s13196-018-0205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13196-018-0205-6

Keywords

Navigation