Skip to main content
Log in

A Review on Ingested Cyanide: Risks, Clinical Presentation, Diagnostics, and Treatment Challenges

  • Review
  • Published:
Journal of Medical Toxicology Aims and scope Submit manuscript

Abstract

Cyanide, a metabolic poison, is a rising chemial threat and ingestion is the most common route of exposure. Terrorist organizations have threatened to attack the USA and international food and water supplies. The toxicokinetics and toxicodynamics of oral cyanide are unique, resulting in high-dose exposures, severe symptoms, and slower onset of symptoms. There are no FDA-approved therapies tested for oral cyanide ingestions and no approved intramuscular or oral therapies, which would be valuable in mass casualty settings. The aim of this review is to evaluate the risks of oral cyanide and its unique toxicokinetics, as well as address the lack of available rapid diagnostics and treatments for mass casualty events. We will also review current strategies for developing new therapies. A review of the literature using the PRISMA checklist detected 7284 articles, screened 1091, and included 59 articles or other reports. Articles referenced in this review were specific to risk, clinical presentation, diagnostics, current treatments, and developing therapies. Current diagnostics of cyanide exposure can take hours or days, which can delay treatment. Moreover, current therapies for cyanide poisoning are administered intravenously and are not specifically tested for oral exposures, which can result in higher cyanide doses and unique toxicodynamics. New therapies developed for oral cyanide exposures that are easily delivered, safe, and can be administered quickly by first responders in a mass casualty event are needed. Current research is aimed at identifying an antidote that is safe, effective, easy to administer, and has a rapid onset of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simeonova FP, Fishbein L. Hydrogen cyanide and cyanides: human health aspects. 2004 [cited 2018 August 4]. Available from: http://www.who.int/iris/handle/10665/42942.

  2. Agency for Toxic Substances and Disease Registry. Public health statement for cyanide. 2006 [cited 2018 August 4]. Available from: https://www.atsdr.cdc.gov/phs/phs.asp?id=70&tid=19.

  3. Lee SK, Rhee JS, Yum HS. Cyanide poisoning deaths detected at the national forensic service headquarters in Seoul of Korea: a six year survey [2005~2010]. Toxicol Res. 2012;28(3):195–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Morocco AP. Cyanides. Crit Care Clin. 2005;21(4):691–705 vi.

    Article  CAS  PubMed  Google Scholar 

  5. Eckstein M. Cyanide as a chemical terrorism weapon. JEMS. 2004;29(8):suppl 22–31.

    Google Scholar 

  6. Director of National Intelligence. Terror franchise: the unstoppable assassin. 2015 [cited 2018 August 4]; 10]. Available from: http://www.dni.gov/files/documents/ubl/english/TerrorFranchise.pdf.

  7. Moore J. ISIS supporters call for poisoning of food in grocery stores across U.S. and Europe. Newsweek 2007 [cited 2018 August 2]. Available from: http://www.newsweek.com/isis-supporters-call-poisoning-grocery-stores-us-and-europe-660750.

  8. Hodoh O, Dallas CE, Williams P, Jaine AM, Harris C. A benchmark system to optimize our defense against an attack. Am J Dis Med. 2015;10(3):177–88.

    Article  Google Scholar 

  9. Parker-Cote JL, Rizer J, Vakkalanka JP, Rege SV, Holstege CP. Challenges in the diagnosis of acute cyanide poisoning. Clin Toxicol [Phila]. 2018;56(7):609–17.

    Article  CAS  Google Scholar 

  10. Agency for Toxic Substances and Disease Registry. Toxicological profile for cyanide. 2006 [cited 2018 July 30]. Available from: https://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=72&tid=19.

  11. American College of Emergency Physicians. Most emergency physicians report hospitals lack critical medicines; not “fully prepared” for disasters, mass casualty incidents. 2018 [cited 2018 August 4]. Available from: Most emergency physicians report hospitals lack critical medicines; not “fully prepared” for disasters. Mass Casualty Incidents.

  12. Bhattacharya R, Flora SJS. Cyanide toxicity and its treatment. In: Handbook of toxicology of chemical warfare agents. Cambridge: Academic Press; 2015.

  13. Way JL. Cyanide intoxication and its mechanism of antagonism. Annu Rev Pharmacol Toxicol. 1984;24:451–81.

    Article  CAS  PubMed  Google Scholar 

  14. Tsou CL. On the cyanide inactivation of succinic dehydrogenase and the relation of succinic dehydrogenase to cytochrome b. Biochem J. 1951;49(4):512–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Borron SW, Bebarta VS. Asphyxiants. Emerg Med Clin North Am. 2015;33(1):89–115.

    Article  PubMed  Google Scholar 

  16. Pettersen JC, Cohen SD. The effects of cyanide on brain mitochondrial cytochrome oxidase and respiratory activities. J Appl Toxicol. 1993;13(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  17. EPA, U.S. IRIS toxicological review of hydrogen cyanide and cyanide salts [Final Report]. 2010 [cited 2018 August 2]. Available from: https://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deid=227766.

  18. Lee J, Mahon SB, Mukai D, Burney T, Katebian BS, Chan A, et al. The vitamin B12 analog cobinamide is an effective antidote for oral cyanide poisoning. J Med Toxicol. 2016;12(4):370–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gracia R, Shepherd G. Cyanide poisoning and its treatments. Pharmacotherapy. 2004;24(10):1358–65.

    Article  CAS  PubMed  Google Scholar 

  20. Bhandari RK, Oda RP, Petrikovics I, Thompson DE, Brenner M, Mahon SB, et al. Cyanide toxicokinetics: the behavior of cyanide, thiocyanate and 2-amino-2-thiazoline-4-carboxylic acid in multiple animal models. J Anal Toxicol. 2014;38(4):218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andersen LW, Mackenhauer J, Roberts JC, Berg KM, Cocchi MN, Donnino MW. Etiology and therapeutic approach to elevated lactate levels. Mayo Clin Proc. 2013;88(10):1127–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Borron SW, Baud FJ. Antidotes for acute cyanide poisoning. Curr Pharm Biotechnol. 2012;13(10):1940–8.

    Article  CAS  PubMed  Google Scholar 

  23. Suskind R. The one percent doctrine : deep inside America’s pursuit of its enemies since 9/11. New York: Simon & Schuster; 2007.

    Google Scholar 

  24. Cheung R, Hoffman RS, Vlahov D, Manini AF. Prognostic utility of initial lactate in patients with acute drug overdose: a validation cohort. Ann Emerg Med. 2018;72(1):16–23.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Logue B, Hinkens DM, Baskin SI, Rockwodd GA. The analysis of cyanide and its breakdown products in biological samples. Crit Rev Anal Chem. 2010;40(2):122–47.

    Article  CAS  Google Scholar 

  26. Ma J, Dasgupta PK. Recent developments in cyanide detection: a review. Anal Chim Acta. 2010;673(2):117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jackson R, Logue BA. A review of rapid and field-portable analytical techniques for the diagnosis of cyanide exposure. Anal Chim Acta. 2017;960:18–39.

    Article  CAS  PubMed  Google Scholar 

  28. Chandra H, Gupta BN, Bhargava SK, Clerk SH, Mahendra PN. Chronic cyanide exposure--a biochemical and industrial hygiene study. J Anal Toxicol. 1980;4(4):161–5.

    Article  CAS  PubMed  Google Scholar 

  29. Zakharov S, Vaneckova M, Seidl Z, Diblik P, Kuthan P, Urban P, et al. Successful use of hydroxocobalamin and sodium thiosulfate in acute cyanide poisoning: a case report with follow-up. Basic Clin Pharmacol Toxicol. 2015;117(3):209–12.

    Article  CAS  PubMed  Google Scholar 

  30. Reade MC, Davies SR, Morley PT, Dennett J, Jacobs IC, the Australian Resuscitation Council. Review article: management of cyanide poisoning. Emerg Med Australas. 2012;24(3):225–38.

    Article  PubMed  Google Scholar 

  31. Borron SW. The perfect antidote. Acad Emerg Med. 2014;21(11):1292–4.

    Article  PubMed  Google Scholar 

  32. Mokhlesi B, Leiken JB, Murray P, Corbridge TC. Adult toxicology in critical care: part I: general approach to the intoxicated patient. Chest. 2003;123(2):577–92.

    Article  PubMed  Google Scholar 

  33. RTI International. Cyanide: understanding the risk, enhancing preparedness. Clin Toxicol. 2006;44(suppl 1):47–63.

    Article  Google Scholar 

  34. Gleick PH. Water and terrorism. Water Policy. 2006;8(6):481–503.

    Article  Google Scholar 

  35. Jasarevic T. WHO alarmed by use of highly toxic chemicals as weapons in Syria. WHO Statement 2017 [cited 2018 August 4]. Available from: http://www.who.int/en/news-room/detail/05-04-2017-who-alarmed-by-use-of-highly-toxic-chemicals-as-weapons-in-syria#.WOaJ20hNyPQ.email.

  36. Hamel J. A review of acute cyanide poisoning with a treatment update. Crit Care Nurse. 2011;31(1):72–81 quiz 82.

    Article  PubMed  Google Scholar 

  37. Baskin SI, Brewer TG. Medical aspects of chemical and biological warfare. In: Zajtchuk R, editor. Textbook of military medicine. Washington, D.C.: Office of The Surgeon General: Department of the Army, United States of America; 1997.

  38. Cummings TF. The treatment of cyanide poisoning. Occup Med (Lond). 2004;54(2):82–5.

    Article  CAS  Google Scholar 

  39. Hill RL, Wilmot JG, Belluscio BA, Cleary K, Lindisch D, Tucker R, et al. Comparison of drug delivery with autoinjector versus manual prefilled syringe and between three different autoinjector devices administered in pig thigh. Med Devices [Auckl]. 2016;9:257–66.

    Google Scholar 

  40. Brown J, Tuthill D, Alfaham M, Spear E. A randomized maternal evaluation of epinephrine autoinjection devices. Pediatr Allergy Immunol. 2013;24(2):173–7.

    Article  PubMed  Google Scholar 

  41. Arga M, Bakirtas A, Catal F, Derinoz O, Harmanci K, Razi CH, et al. Training of trainers on epinephrine autoinjector use. Pediatr Allergy Immunol. 2011;22(6):590–3.

    Article  PubMed  Google Scholar 

  42. Bakirtas A, Arga M, Catal F, Derinoz O, Demirsoy MS, Turktas I. Make-up of the epinephrine autoinjector: the effect on its use by untrained users. Pediatr Allergy Immunol. 2011;22(7):729–33.

    Article  PubMed  Google Scholar 

  43. Robinson MN, Dharmage SC, Tang ML. Comparison of adrenaline auto-injector devices: ease of use and ability to recall use. Pediatr Allergy Immunol. 2014;25(5):462–7.

    Article  CAS  PubMed  Google Scholar 

  44. Bebarta VS, Tanen DA, Boudreau S, Castaneda M, Zarzabal LA, Vargas T, et al. Intravenous cobinamide versus hydroxocobalamin for acute treatment of severe cyanide poisoning in a swine [Sus scrofa] model. Ann Emerg Med. 2014;64(6):612–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chan A, Crankshaw DL, Monteil A, Patterson SE, Nagasawa HT, Briggs JE, et al. The combination of cobinamide and sulfanegen is highly effective in mouse models of cyanide poisoning. Clin Toxicol [Phila]. 2011;49(5):366–73.

    Article  CAS  Google Scholar 

  46. Brenner M, et al. Comparison of cobinamide to hydroxocobalamin in reversing cyanide physiologic effects in rabbits using diffuse optical spectroscopy monitoring. J Biomed Opt. 2010;15(1):017001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brenner M, Kim JG, Mahon SB, Lee J, Kreuter KA, Blackledge W, et al. Intramuscular cobinamide sulfite in a rabbit model of sublethal cyanide toxicity. Ann Emerg Med. 2010;55(4):352–63.

    Article  PubMed  PubMed Central  Google Scholar 

  48. DeLeon SM, Downey JD, Hildenberger DM, Rhoomes MO, Booker L, Rockwood GA, et al. DMTS is an effective treatment in both inhalation and injection models for cyanide poisoning using unanesthetized mice. Clin Toxicol [Phila]. 2018;56(5):332–41.

    Article  CAS  Google Scholar 

  49. Hendry-Hofer TB, Witeof AE, Lippner D, Ng PC, Mahon SB, Brenner M, et al. Intramuscular dimethyl trisulfide: efficacy in a large swine model of acute severe cyanide toxicity. Clin Toxicol. 2018. In press:1–6.

  50. Rockwood GA, Thompson DE, Petrikovics I. Dimethyl trisulfide: a novel cyanide countermeasure. Toxicol Ind Health. 2016;32(12):2009–16.

  51. Bebarta VS, et al. Sodium nitrite and sodium thiosulfate are effective against acute cyanide poisoning when administered by intramuscular injection. Ann Emerg Med. 2017;69(6):718–725.e4.

    Article  PubMed  Google Scholar 

  52. US Department of Health and Human Services. NIH strategic plan and research agenda for medical countermeasures against chemical threats. 2007. Available from: https://www.niaid.nih.gov/sites/default/files/nihstrategicplanchem.pdf.

  53. US Department of Health and Human Services. 2017-2018 PHEMCE Strategy and Implementation Plan 2016. Available from: https://www.phe.gov/Preparedness/mcm/phemce/Pages/strategy.aspx.

  54. US Department of Health and Human Services, Federal Drug Administration. Product Development Under the Animal Rule Guidance for Industry. 2015. Available from: https://www.fda.gov/downloads/drugs/guidances/ucm399217.pdf.

  55. Sabourin PJ, Kobs CL, Gibbs ST, Hong P, Matthews CM, Patton KM, et al. Characterization of a mouse model of oral potassium cyanide intoxication. Int J Toxicol. 2016;35(5):584–603.

    Article  CAS  PubMed  Google Scholar 

  56. Aminlari M, Gilanpour H. Comparative studies on the distribution of rhodanese in different tissues of domestic animals. Comp Biochem Physiol. 1991;99B:673–7.

    CAS  Google Scholar 

  57. Borron SW, Stonerook M, Reid F. Efficacy of hydroxocobalamin for the treatment of acute cyanide poisoning in adult Beagle dogs. Clin Toxicol. 2006;44(suppl 1):5–15.

    Article  CAS  Google Scholar 

  58. Ng PC, Hendry-Hofer TB, Witeof AE, Brenner M, Mahon SB, Boss GR, et al. Model of oral potassium cyanide intoxication. Comp Med. 2018; in press.

  59. Babin M, Reid FM, Jett DA, Platoff GE Jr, Yeung DT. Animal models for testing antidotes against an oral cyanide challenge. 2016; Technical Report,01 Nov 2013,30 Sep 2016]. Available from: http://www.dtic.mil/docs/citations/AD1015208 .

Download references

Author information

Authors and Affiliations

Authors

Contributions

TH, NG, AE, SM, MB, GB, and VB were involved in the literature and manuscript review. All authors reviewed and approved the manuscript for submission.

Corresponding author

Correspondence to Tara B. Hendry-Hofer.

Ethics declarations

Conflicts of Interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendry-Hofer, T.B., Ng, P.C., Witeof, A.E. et al. A Review on Ingested Cyanide: Risks, Clinical Presentation, Diagnostics, and Treatment Challenges. J. Med. Toxicol. 15, 128–133 (2019). https://doi.org/10.1007/s13181-018-0688-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13181-018-0688-y

Keywords

Navigation