Skip to main content
Log in

Asymptotic Expansion of the Posterior Based on Pairwise Likelihood

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

This paper provides an asymptotic expansion of the posterior based on pairwise likelihood instead of the regular likelihood. The celebrated Bernstein-von Mises theorem is derived as a special case. A multiparameter version of the asymptotic expansion is also given involving nuisance parameters. As a direct application of these expansions, one can obtain moment matching priors and quantile matching priors with or without nuisance parameters. A simulation study is provided verifying this agreement between frequentist quantiles and Bayesian quantiles using quantile matching priors. One of the major tools used in this paper is strong consistency of the maximum pairwise likelihood estimator (MPLE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger J.O. and Bernardo J.M. (1989). Estimating a product of means: Bayesian, analysis with reference priors. Journal of the American Statistical Association 84, 405, 200–207.

    Article  MathSciNet  MATH  Google Scholar 

  • Berger J.O. and Bernardo J.M. (1992). Ordered group reference priors with application to the multinomial problem. Biometrika 79, 1, 25–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Bernardo J.M. (1979). Reference posterior distributions for Bayesian inference. Journal of the Royal Statistical Society. Series B (Methodological) 41, 2, 113–147.

    MathSciNet  MATH  Google Scholar 

  • Cox D.R. and Reid N. (1987). Parameter orthogonality and approximate conditional inference . Journal of the Royal Statistical Society. Series B (Methodological) 49, 1, 1–39.

    MathSciNet  MATH  Google Scholar 

  • Cox D.R. and Reid N. (2004). A note on pseudolikelihood constructed from marginal densities . Biometrika 91, 3, 729–737.

    Article  MathSciNet  MATH  Google Scholar 

  • Datta G.S. and Ghosh, M. (1995). Some remarks on noninformative priors . Journal of the American Statistical Association 90, 432, 1357–1363.

    Article  MathSciNet  MATH  Google Scholar 

  • Datta G.S. and Mukerjee R. 2004 Probability matching priors: higher order asymptotics, Springer.

  • Geys H., Molenberghs G. and Ryan L.M. (1999). Pseudolikelihood modeling of multivariate outcomes in developmental toxicology. Journal of the American Statistical Association 94, 447, 734–745.

    Article  Google Scholar 

  • Ghosh M. and Liu, R. (2011). Moment matching priors. Sankhya 73-A, 2, 185–201.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson R.A. (1970). Asymptotic expansions associated with posterior distributions. The Annals of Mathematical Statistics 41, 3, 851–864.

    Article  MathSciNet  MATH  Google Scholar 

  • Kent J.T. (1982). Robust properties of likelihood ratio tests. Biometrika 69, 1, 19–27.

    MathSciNet  MATH  Google Scholar 

  • Le Cessie S. and Van Houwelingen J. (1994). Logistic regression for correlated binary data. Applied Statistics 43, 1, 95–108.

    Article  MATH  Google Scholar 

  • Lindsay B.G. (1988). Composite likelihood methods. Contemporary Mathematics 80, 221–239.

    Article  MathSciNet  MATH  Google Scholar 

  • Molenberghs G. and Verbeke V. 2005 Models for discrete longitudinal data. Springer.

  • Pauli F., Racugno W. and Ventura L. (2011). Bayesian composite marginal likelihoods. Statistica Sinica 21, 149–164.

    MathSciNet  MATH  Google Scholar 

  • Ribatet M., Cooley D. and Davison A.C. (2012). Bayesian inference from composite likelihoods, with an application to spatial extremes. Statistica Sinica, 813–845.

  • Rubin H. (1956). Uniform convergence of random functions with applications to statistics. The Annals of Mathematical Statistics 27, 1, 200–203.

    Article  MathSciNet  MATH  Google Scholar 

  • Ruli E., Sartori N. and Ventura L. (2013). Approximate Bayesian computation with composite score functions. Statistics and Computing, 1–14.

  • Ruli E. and Ventura L. 2015 Higher-order Bayesian approximations for pseudo-posterior distributions , Communications in Statistics – Simulation and Computation, to appear.

  • Smith E.L. and Stephenson A.G. (2009). An extended Gaussian, max-stable process model for spatial extremes . Journal of Statistical Planning and Inference 139, 1266–1275.

    Article  MathSciNet  MATH  Google Scholar 

  • Staicu A.-M. and Reid N. M. (2008). On probability matching priors . The Canadian Journal of Statistics 36, 4, 613–622.

    Article  MathSciNet  MATH  Google Scholar 

  • Tierney L. and Kadane J.B. (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association 81, 393, 82–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Tierney L., Kass R.E. and Kadane J.B. (1989). Fully exponential Laplace, approximations to expectations and variances of nonpositive functions . Journal of the American Statistical Association 84, 407, 710–716.

    Article  MathSciNet  MATH  Google Scholar 

  • Varin C. (2008). On composite marginal likelihoods. AStA Advances in Statistical Analysis 92, 1, 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Varin C., Reid N. and Firth D. (2011). An overview of composite likelihood methods . Statistica Sinica 21, 5–42.

    MathSciNet  MATH  Google Scholar 

  • Xu X. and Reid N. (2011). On the robustness of maximum composite likelihood estimate. Journal of Statistical Planning and Inference 141, 3047–3054.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Ghosh, M. Asymptotic Expansion of the Posterior Based on Pairwise Likelihood. Sankhya A 79, 39–75 (2017). https://doi.org/10.1007/s13171-016-0094-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-016-0094-y

Keywords and phrases

AMS (2000) subject classification

Navigation