Skip to main content
Log in

On Bayesian Quantile Regression Using a Pseudo-joint Asymmetric Laplace Likelihood

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

We consider a pseudo-likelihood for Bayesian estimation of multiple quantiles as a function of covariates. This arises as a simple product of multiple asymmetric Laplace densities (ALD), each corresponding to a particular quantile. The ALD has already been used in the Bayesian estimation of a single quantile. However, the pseudo-joint ALD likelihood is a way to incorporate constraints across quantiles, which cannot be done if each of the quantiles is modeled separately. Interestingly, we find that the normalized version of the likelihood turns out to be misleading. Hence, the pseudo-likelihood emerges as an alternative. In this note, we show that posterior consistency holds for the multiple quantile estimation based on such a likelihood for a nonlinear quantile regression framework and in particular for a linear quantile regression model. We demonstrate the benefits and explore potential challenges with the method through simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benoit, D.F. and Van den Poel, D. (2012). Binary quantile regression: a Bayesian approach based on the asymmetric Laplace distribution. J. Appl. Econometrics 27, 1174–1188.

    Article  MathSciNet  Google Scholar 

  • Chernozhukov, V., Fernández-Val, I. and Galichon, A. (2010). Quantile and probability curves without crossing. Econometrica 78, 1093–1125.

    Article  MathSciNet  MATH  Google Scholar 

  • Dette, H. and Volgushev, S. (2008). Non-crossing non-parametric estimates of quantile curves. J. R. Stat. Soc. Ser. B Stat. Methodol. 70, 609–627.

    Article  MathSciNet  MATH  Google Scholar 

  • Dunson, D.B. and Taylor, J.A. (2005). Approximate Bayesian inference for quantiles. J. Nonparametr. Stat. 17, 385–400.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosal, S. and Roy, A. (2006). Posterior consistency of gaussian process prior for nonparametric binary regression. Ann. Statist. 34, 2413–2429.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosal, S. and van der Vaart, A. (2007). Convergence rates of posterior distributions for noniid observations. Ann. Statist. 35, 192–223.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh, J.K. and Ramamoorthi, R.V. (2003). Bayesian nonparametrics. Springer.

  • He, X. (1997). Quantile curves without crossing. Amer. Statist. 51, 186–192.

    Google Scholar 

  • Kleijn, B.J.K. and van der Vaart, A.W. (2012). The Bernstein-Von-Mises theorem under misspecification. Electron. J. Stat. 6, 354–381.

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker, R. (1984). A Noteon L-estimates for linear models. Statist. Probab. Lett. 2, 322–325.

    Article  MathSciNet  Google Scholar 

  • Koenker, R. and Bassett, G.J. (1978). Regression quantiles. Econometrica 46, 33–50.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramamoorthi, R., Sriram, K. and Martin, R. (2015). On posterior concentration in misspecified models. (Forthcoming) Available online at http://bayesian.org/BA/19667.

  • Reich, B.J., Fuentes, M. and Dunson, D.B. (2011). Bayesian spatial quantile regression. J. Amer. Statist. Assoc. 106, 6–20.

    Article  MathSciNet  MATH  Google Scholar 

  • Sriram, K., Ramamoorthi, R.V. and Ghosh, P. (2013). Posterior consistency of Bayesian quantile regression based on the misspecified asymmetric Laplace density. Bayesian Anal. 8, 479–504.

    Article  MathSciNet  MATH  Google Scholar 

  • Taddy, M.A. and Kottas, A. (2010). A Bayesian nonparametric approach to inference for quantile regression. J. Bus. Econom. Statist. 28, 357–369.

    Article  MathSciNet  MATH  Google Scholar 

  • Tokdar, S. T. and Kadane, J. B. (2012). Simultaneous linear quantile regression: a semiparametric Bayesian approach. Bayesian Anal. 7, 51–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, Y. and Liu, Y. (2009). Stepwise multiple quantile regression estimation using non-crossing constraints. Stat. Interface 2, 299–310.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, Y. and He, X. (2012). Bayesian empirical likelihood for quantile regression. Annals Stat. 40, 1102–1131.

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, K. and Moyeed, R.A. (2001). Bayesian quantile regression. Statist. Probab. Lett. 54, 437–447.

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, K., van Kerm, P. and Zhang, J. (2005). Bayesian quantile regression: an application to the wage distribution in 1990s Britain. Sankhyā 57, 359–377.

    MathSciNet  MATH  Google Scholar 

  • Yue, Y.R. and Rue, H. (2011). Bayesian inference for additive mixed quantile regression models. Comput. Statist. Data Anal. 55, 84–96.

    Article  MathSciNet  MATH  Google Scholar 

  • Zou, H. and Yuan, M. (2008). Composite quantile regression and the oracle model selection theory. Annals Stat. 36, 1108–1126.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Sriram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriram, K., Ramamoorthi, R.V. & Ghosh, P. On Bayesian Quantile Regression Using a Pseudo-joint Asymmetric Laplace Likelihood. Sankhya A 78, 87–104 (2016). https://doi.org/10.1007/s13171-015-0079-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-015-0079-2

Keywords and phrases

AMS (2000) subject classification

Navigation