Skip to main content
Log in

On the estimation of density-weighted average derivative by wavelet methods under various dependence structures

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

The problem of estimating the density-weighted average derivative of a regression function is considered. We present a new consistent estimator based on a plug-in approach and wavelet projections. Its performances are explored under various dependence structures on the observations: the independent case, the ρ-mixing case and the α-mixing case. More precisely, denoting n the number of observations, in the independent case, we prove that it attains 1/n under the mean squared error, in the ρ-mixing case, \(1/\sqrt{n}\) under the mean absolute error, and, in the α-mixing case, \(\sqrt{\ln n /n}\) under the mean absolute error. A short simulation study illustrates the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antoniadis, A. (1997). Wavelets in statistics: a review (with discussion). J. Ital. Statist. Soc., 6, 97–144.

    Article  Google Scholar 

  • Banerjee, A.N. (2007). A method of estimating the average derivative. J. Econometrics, 136, 65–88.

    Article  MathSciNet  Google Scholar 

  • Cattaneo, M.D., Crump, R.K. and Jansson, M. (2010). Robust data-driven inference for density-weighted average derivatives. J. Amer. Stat. Assoc., 105, 1070– 1083.

    Article  MathSciNet  Google Scholar 

  • Cattaneo, M.D., Crump, R.K. and Jansson, M. (2008). Small bandwidth asymptotics for density-weighted average derivatives. CREATES Research Paper 200824. Available at SSRN: http://ssrn.com/abstract=1148173.

  • Carrasco, M. and Chen, X. (2002). Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory, 18, 17–39.

    Article  MATH  MathSciNet  Google Scholar 

  • Chaubey, Y.P. and Doosti, H. (2005). Wavelet based estimation of the derivatives of a density for m-dependent random variables. J. Iran. Stat. Soc., 4, 97–105.

    Google Scholar 

  • Chaubey, Y.P., Doosti, H. and Prakasa Rao, B.L.S. (2006). Wavelet based estimation of the derivatives of a density with associated variables. Int. J. Pure Appl. Math., 27, 97–106.

    MATH  MathSciNet  Google Scholar 

  • Cohen, A., Daubechies, I., Jawerth, B. and Vial, P. (1993). Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal., 24, 54–81.

    Article  Google Scholar 

  • Coppejans, M. and Sieg, H. (2005). Kernel Estimation of Average Derivatives and Differences. J. Bus. Econ. Stat., 23, 211–225.

    Article  MathSciNet  Google Scholar 

  • Daubechies, I. (1992). Ten Lectures on Wavelets. CBMS-NSF regional conferences series in applied mathematics. SIAM, Philadelphia.

    Google Scholar 

  • Davydov, Y. (1970). The invariance principle for stationary processes. Theor. Probab. Appl., 15, 498–509.

    Article  MATH  Google Scholar 

  • Deaton, A. and Ng, S. (1998). Parametric and nonparametric approaches to price and tax reform. J. Amer. Stat. Assoc., 93, 900–909.

    Article  Google Scholar 

  • Doukhan, P. (1994). Mixing. Properties and Examples. Lecture Notes in Statistics 85. Springer Verlag, New York.

    MATH  Google Scholar 

  • Fryzlewicz, P. and Subba Rao, S. (2011). Mixing properties of ARCH and time-varying ARCH processes. Bernoulli, 17, 320–346.

    Article  MATH  MathSciNet  Google Scholar 

  • Härdle, W. and Stoker, T.M. (1989). Investigating smooth multiple regression by the method of average derivatives. J. Amer. Stat. Assoc., 84, 986–995.

    MATH  Google Scholar 

  • Härdle, W., Hildenbrand, W. and Jerison, M. (1991). Empirical evidence on the law of demand. Econometrica, 59, 1525–1549.

    Article  MATH  Google Scholar 

  • Härdle, W., Hart, J., Marron, J.S. and Tsybakov, A.B. (1992). Bandwidth choice for average derivative estimation. J. Amer. Stat. Assoc., 87, 417, 218–226.

    MATH  Google Scholar 

  • Härdle, W. and Tsybakov, A.B. (1993). How sensitive are average derivatives?. J. Econom., 58, 31–48.

    Article  MATH  Google Scholar 

  • Härdle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. (1998). Wavelet, Approximation and Statistical Applications. Lectures Notes in Statistics 129. Springer Verlag, New York.

    Book  Google Scholar 

  • Hansen, B. (2009). Lecture Notes on Nonparametrics, Lecture Notes.

  • Juditsky, A. and Lambert-Lacroix, S. (2004). On minimax density estimation on R. Bernoulli, 10, 187–220.

    Article  MATH  MathSciNet  Google Scholar 

  • Kolmogorov, A.N. and Rozanov, Yu.A. (1960). On strong mixing conditions for stationary Gaussian processes. Theor. Probab. Appl., 5, 204–208.

    Article  MathSciNet  Google Scholar 

  • Lütkepohl, H. (1992). Multiple Time Series Analysis. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Mallat, S. (2009). A Wavelet Tour of Signal Processing, Third Edition. The Sparse Way, with Contributions from Gabriel Peyré. Elsevier/Academic Press, Amsterdam.

    Google Scholar 

  • Marron, J.S., Adak, S., Johnstone, I.M., Neumann, M.H. and Patil, P. (1998). Exact risk analysis of wavelet regression. J. Comput. Graph. Statist., 7, 278–309.

    Google Scholar 

  • Matzkin, R.L. (2007). Nonparametric Identification. In Handbook of Econometrics (J. Heckman and E. Leamer Eds.). Elsevier Science B.V., VIB, pp. 5307– 5368.

  • Meyer, Y. (1992). Wavelets and Operators. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Powell, J.L., Stock, J.H. and Stoker, T.M. (1989). Semiparametric estimation of index coefficients. Econometrica, 57, 1403–1430.

    Article  MATH  MathSciNet  Google Scholar 

  • Powell, J.L. (1994). Estimation of Semiparametric Models. In Handbook of Econometrics (R. Engle and D. McFadden Eds.). Elsevier Science B.V., IV, pp. 2443– 2521.

  • Powell, J.L. and Stoker, T.M. (1996). Optimal bandwidth choice for density-weighted averages. J. Econometrics, 75, 291–316.

    Article  MATH  MathSciNet  Google Scholar 

  • Prakasa Rao, B.L.S. (1995). Consistent estimation of density-weighted average derivative by orthogonal series method. Statist. Probab. Lett., 22, 205–212.

    Article  MATH  MathSciNet  Google Scholar 

  • Prakasa Rao, B.L.S. (1996). Nonparametric estimation of the derivatives of a density by the method of wavelets. Bull. Inform. Cybernet., 28, 91–10.

    MathSciNet  Google Scholar 

  • Reynaud-Bouret, P., Rivoirard, V. and Tuleau-Malot, C. (2011). Adaptive density estimation: a curse of support? J. Statist. Plann. Inference, 141, 115–139.

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. USA, 42, 43–47.

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenthal, H.P. (1970). On the subspaces of \(\mathbb{L}_p\) (p ≥ 2) spanned by sequences of independent random variables. Israel J. Math., 8, 273–303.

    Article  MATH  MathSciNet  Google Scholar 

  • Schafgans, M. and Zinde-Walsh, V. (2010). Smoothness adaptive average derivative estimation. Econom. J., 13, 40–62.

    Article  MATH  MathSciNet  Google Scholar 

  • Shao, Q.-M. (1995). Maximal inequality for partial sums of ρ-mixing sequences. Ann. Probab., 23, 948–965.

    Article  MATH  MathSciNet  Google Scholar 

  • Stoker, T.M. (1986). Consistent estimation of scaled coefficients. Econometrica, 54, 1461–1481.

    Article  MATH  MathSciNet  Google Scholar 

  • Stoker, T.M. (1989). Tests of additive derivative constraints. Rev. Econ. Stud., 56, 535–552.

    Article  MATH  MathSciNet  Google Scholar 

  • Stoker, T.M. (1991). Equivalence of Direct, Indirect and Slope Estimators of Average Derivatives, Nonparametric and Semiparametric Methods in Econometrics and Statistics (W.A. Barnett, J. Powell and G. Tauchen Eds.). Cambridge University Press.

  • Türlach, B.A. (1994). Fast implementation of density-weighted average derivative estimation. Computationally Intensive Statistical Methods, 26, 28–33.

    Google Scholar 

  • White, H. and Domowitz, I. (1984). Nonlinear regression with dependent observations. Econometrica, 52, 143–162.

    Article  MATH  MathSciNet  Google Scholar 

  • Vidakovic, B. (1999). Statistical Modeling by Wavelets. John Wiley & Sons, Inc., New York, 384 pp.

    Book  MATH  Google Scholar 

  • Zhengyan, L. and Lu, C. (1996). Limit Theory for Mixing Dependent Random Variables. Kluwer, Dordrecht.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Chesneau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chesneau, C., Kachour, M. & Navarro, F. On the estimation of density-weighted average derivative by wavelet methods under various dependence structures. Sankhya A 76, 48–76 (2014). https://doi.org/10.1007/s13171-013-0032-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-013-0032-1

Keywords and phrases.

AMS (2000) subject classification.

Navigation