Skip to main content
Log in

Convergence in measure under finite additivity

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

We investigate the possibility of replacing the topology of convergence in probability with convergence in L 1, upon a change of the underlying measure under finite additivity. We establish conditions for the continuity of linear operators and convergence of measurable sequences, including a finitely additive analog of Komlós Lemma. We also prove several topological implications. Eventually, a characterization of continuous linear functionals on the space of measurable functions is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliprantis, C.D. and Burkinshaw, O. (1985). Positive operators. Academic Press, Orlando.

    MATH  Google Scholar 

  • Berti, P. and Rigo, P. (2004). Convergence in distribution of nonmeasurable random elements. Ann. Probab., 32, 365–379.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhaskara Rao, K.P.S. and Bhaskara Rao, M. (1983). Theory of charges. Academic Press, London.

    MATH  Google Scholar 

  • Cassese, G. (2009). Sure wins, separating probabilities and the representation of linear functionals. J. Math. Anal. Appl., 354, 558–563.

    Article  MathSciNet  MATH  Google Scholar 

  • Cassese, G. (2012). Some Implications of Lebesgue Decomposition. arXiv:1203.1192v2.

  • Delbaen, F. and Schachermayer, W. (1994). A general version of the fundamental theorem of asset pricing. Math. Ann., 300, 463–520.

    Article  MathSciNet  MATH  Google Scholar 

  • Dellacherie, C. and Meyer, P.A. (1982). Probabilities and potential B. North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Dunford, N. and Schwartz, J. (1988). Linear Operators. General Theory. Wiley, New York.

    Google Scholar 

  • Fefferman, C. (1968). L p spaces over finitely additive measures. Pacific J. Math., 26, 265–271.

    Article  MathSciNet  Google Scholar 

  • Harrison, J.M. and Kreps, D.M. (1979). Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory, 20, 381–408.

    Article  MathSciNet  MATH  Google Scholar 

  • Kardaras, C. and Žitković, G. (2013). Forward-convex convergence in probability of sequences of nonnegative random variables. Proc. Amer. Math. Soc., 141, 919–929.

    Article  MathSciNet  MATH  Google Scholar 

  • Komlós, J. (1967). A generalization of a problem of Steinhaus. Acta Math. Hungar., 18, 217–229.

    Article  MATH  Google Scholar 

  • Memin, J. (1980). Espace de Semi Martingales et Changement de Probabilité. Z. Wahrsch. Verw. Gebiete, 52, 9–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Mukherjee, T.K. and Summers, W.H. (1974). Functionals arising from convergence in measure. Amer. Math. Month., 81, 63–66.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Cassese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassese, G. Convergence in measure under finite additivity. Sankhya A 75, 171–193 (2013). https://doi.org/10.1007/s13171-013-0030-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-013-0030-3

Keywords

AMS (2000) subject classification

Navigation