Skip to main content
Log in

Wavelet density estimators for the deconvolution of a component from a mixture

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

We consider the model: Y = X + ε, where X and ε are independent random variables. The density of ε is known whereas the one of X is a finite mixture with unknown components. Considering the “ordinary smooth case” on the density of ε, we want to estimate a component of this mixture. To reach this goal, we develop two wavelet estimators: a nonadaptive based on a projection and an adaptive based on a hard thresholding rule. We evaluate their performances by considering the mean integrated squared error over Besov balls. We prove that the adaptive one attains a sharp rate of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Butucea, C. and Matias, C. (2005). Minimax estimation of the noise level and of the signal density in a semiparametric convolution model. Bernoulli, 11, 309–340.

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, T. (1999). Adaptive Wavelet Estimation: A Block Thresholding And Oracle Inequality Approach. Ann. Statist., 27, 898–924.

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, T. (2002). On adaptive wavelet estimation of a derivative and other related linear inverse problems. J. Statist. Plann. Inference, 108, 329–349.

    Article  MathSciNet  MATH  Google Scholar 

  • Caroll, R.J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density. J. Amer. Statist. Assoc., 83, 1184–1186.

    Article  MathSciNet  Google Scholar 

  • Cavalier, L. and Raimondo, M. (2007). Wavelet deconvolution with noisy eigenvalues. IEEE Trans. Signal Process., 55, 2414–2424.

    Article  MathSciNet  Google Scholar 

  • Chesneau, C., Fadili, J. and Starck, J.-L. (2010). Stein block thresholding for image denoising. Appl. Comput. Harmon. Anal., 28, 67–88.

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen, A., Daubechies, I., Jawerth, B. and Vial, P. (1993). Wavelets on the interval and fast wavelet transforms. Appl. Computat. Harmon. Anal., 1, 54–81.

    Article  MATH  Google Scholar 

  • Comte, F., Rozenholc, Y. and Taupin, M.-L. (2006). Penalized contrast estimator for density deconvolution. Canad. J. Statist., 34, 431–452.

    Article  MathSciNet  MATH  Google Scholar 

  • Delaigle, A. and Gijbels, I. (2006). Estimation of boundary and discontinuity points in deconvolution problems. Statist. Sinica, 16, 773–788.

    MathSciNet  MATH  Google Scholar 

  • Delyon, B. and Juditsky, A. (1996). On minimax wavelet estimators. Appl. Comput. Harmon. Anal., 3, 215–228.

    Article  MathSciNet  MATH  Google Scholar 

  • Devroye, L. (1989). Consistent deconvolution in density estimation. Canad. J. Statist., 17, 235–239.

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problem. Ann. Statist., 19, 1257–1272.

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, J. and Koo, J.Y. (2002). Wavelet deconvolution. IEEE Trans. Inform. Theory, 48, 734–747.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P. and Zhou, X.H. (2003). Nonparametric estimation of component distributions in a multivariate mixture. Ann. Statist., 31, 201–224.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnstone, I., Kerkyacharian, G., Picard, D. and Raimondo, M. (2004). Wavelet deconvolution in a periodic setting. J. Roy. Stat. Soc. Ser. B, 66, 547–573.

    Article  MathSciNet  MATH  Google Scholar 

  • Lacour, C. (2006). Rates of convergence for nonparametric deconvolution. C. R. Math. Acad. Sci. Paris, 342, 877–882.

    MathSciNet  MATH  Google Scholar 

  • Lee, M., Shen, H., Burch, C. and Marron, J.S. (2010). Direct deconvolution density estimation of a mixture, distribution motivated by mutation effects distribution. J. Nonparametr. Stat., 22, 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Maiboroda, R. E. (1996). Estimators of components of a mixture with varying concentrations. Ukraïn. Mat. Zh., 48, 562–566.

    MathSciNet  Google Scholar 

  • Meyer, Y. (1992). Wavelets and operators. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Pensky, M. and Vidakovic, B. (1999). Adaptive wavelet estimator for nonparametric density deconvolution. Ann. Statist., 27, 2033–2053.

    Article  MathSciNet  MATH  Google Scholar 

  • Pensky, M. and Sapatinas, T. (2009). Functional deconvolution in a periodic setting: Uniform case. Ann. Statist., 37, 73–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Petrov, V.V. (1995). Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Petsa, A. and Sapatinas, T. (2009). Minimax convergence rates under the \(\mathbb{L}^p \)-risk in the functional deconvolution model. Statist. Probab. Lett., 79, 1568–1576.

    Article  MathSciNet  MATH  Google Scholar 

  • Pokhyl’ko, D. (2005). Wavelet estimators of a density constructed from observations of a mixture. Theory Probab. Math. Statist., 70, 135–145.

    Article  Google Scholar 

  • Prakasa Rao, B.L.S. (2010). Wavelet linear estimation for derivatives of a density from observations of mixtures with varying mixing proportions. Indian J. Pure Appl. Math., 41, 275–291.

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenthal, H.P. (1970). On the subspaces of \(\mathbb{L}^p \) (p ≥2) spanned by sequences of independent random variables. Israel J. Math., 8, 273–303.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsybakov, A. (2004). Introduction à l’estimation nonparamétrique. Springer Verlag, Berlin.

    Google Scholar 

  • Van Es, B., Gugushvili, S. and Spreij, P. (2008), Deconvolution for an atomic distribution, Electron. J. Stat., 2, 265–297.

    MATH  Google Scholar 

  • Willer, T. (2005). Deconvolution in white noise with a random blurring effect. Preprint LPMA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Chesneau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chesneau, C. Wavelet density estimators for the deconvolution of a component from a mixture. Sankhya A 73, 245–266 (2011). https://doi.org/10.1007/s13171-011-0017-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-011-0017-x

AMS (2000) subject classification

Keywords and phrases

Navigation