Skip to main content

Advertisement

Log in

Premenopausal breast cancer: potential clinical utility of a multi-omics based machine learning approach for patient stratification

  • Research
  • Published:
EPMA Journal Aims and scope Submit manuscript

Abstract

Background

The breast cancer (BC) epidemic is a multifactorial disease attributed to the early twenty-first century: about two million of new cases and half a million deaths are registered annually worldwide. New trends are emerging now: on the one hand, with respect to the geographical BC prevalence and, on the other hand, with respect to the age distribution. Recent statistics demonstrate that young populations are getting more and more affected by BC in both Eastern and Western countries. Therefore, the old rule “the older the age, the higher the BC risk” is getting relativised now. Accumulated evidence shows that young premenopausal women deal with particularly unpredictable subtypes of BC such as triple-negative BC, have lower survival rates and respond less to conventional chemotherapy compared to the majority of postmenopausal BC.

Working hypothesis

Here we hypothesised that a multi-level diagnostic approach may lead to the identification of a molecular signature highly specific for the premenopausal BC. A multi-omic approach using machine learning was considered as a potent tool for stratifying patients with benign breast alterations into well-defined risk groups, namely individuals at high versus low risk for breast cancer development.

Results and conclusions

The study resulted in identifying multi-omic signature specific for the premenopausal BC that can be used for stratifying patients with benign breast alterations. Our predictive model is capable of discriminating individually between high and low BC-risk with high confidence (>90%) and considered of potential clinical utility. Novel risk assessment approaches and advanced screening programmes—as the long-term target of this project—are of particular importance for predictive, preventive and personalised medicine as the medicine of the future, due to the expected health benefits for young subpopulations and the healthcare system as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

AUC:

Area under ROC (receiver operating characteristic) curve

BC:

Breast cancer

CA:

Comet Assay

CA I, II, III:

Comet classes I, II and III, respectively

Cat:

Catalase

CHCA:

α-cyano-4-hydroxycinnamic acid

GBM:

Gradient Boosting Machine

Hcy:

Homocysteine

H2O2 :

Hydrogen peroxide

MALDI-TOF:

Matrix-assisted laser desorption/ionisation time-of-flight

TFA:

Trifluoroacetic acid

NMF:

Non-negative matrix factorisation

preBC:

Premenopausal breast cancer

postBC:

Postmenopausal breast cancer

ROS:

Reactive oxygen species

SOD:

Superoxide-dismutase

O :

Superoxide radical

2D-PAGE:

Two-dimensional poly-acrylamide gel electrophoresis

References

  1. Golubnitschaja O, Debald M, Yeghiazaryan K, Kuhn W, Pešta M, Costigliola V, et al. Breast cancer epidemic in the early 21st century: evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures. Tumor Biol. 2016;37(10):12941–57. https://doi.org/10.1007/s13277-016-5168-x.

    Article  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  4. Smokovski I, Risteski M, Polivka J Jr, Zubor P, Konieczka K, Costigliola V, et al. Postmenopausal breast cancer: European challenge and innovative concepts. EPMA J. 2017;8(2):159–69. https://doi.org/10.1007/s13167-017-0094-6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. American Cancer Society. Global cancer facts & figures. 2nd ed. Atlanta: American Cancer Society; 2011.

    Google Scholar 

  6. Ibrahim AS, Khaled HM, Mikhail NN, Baraka H, Kamel H. Cancer incidence in Egypt: results of the national population-based cancer registry program. J Cancer Epidemiol. 2014;2014:437971. https://doi.org/10.1155/2014/437971.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sung H, Rosenberg PS, Chen WQ et al. Female breast cancer incidence among Asian and Western populations: more similar than expected. J Natl Cancer Inst. 2015;107.

  8. Bouchardy C, Fioretta G, Verkooijen HM, Vlastos G, Schaefer P, Delaloye JF, et al. Recent increase of breast cancer incidence among women under the age of forty. British J Cancer. 2007;96(11):1743–6.

    Article  CAS  Google Scholar 

  9. Johnson RH, Chien FL, Bleyer A. Incidence of breast cancer with distant involvement among women in the United States, 1976 to 2009. JAMA. 2013;309(8):800–5.

    Article  PubMed  CAS  Google Scholar 

  10. Merlo DF, Ceppi M, Filiberti R, Bocchini V, Znaor A, Gamulin M, et al. Breast cancer incidence trends in European women aged 20–39 years at diagnosis. Breast Cancer Res Treat. 2012;134(1):363–70. https://doi.org/10.1007/s10549-012-2031-7.

    Article  PubMed  CAS  Google Scholar 

  11. Leclere B, Molinie F, Tretarre B, Stracci F, Daubisse-Marliac L, Colonna M. Trends in incidence of breast cancer among women under 40 in seven European countries: a GRELL cooperative study. Cancer Epidemiol. 2013;37(5):544–9.

    Article  PubMed  Google Scholar 

  12. Bubnov R, Polivka J Jr, Zubor P, Koniczka K, Golubnitschaja O. “Pre-metastatic niches” in breast cancer: are they created by or prior to the tumour onset? “Flammer Syndrome” relevance to address the question. EPMA J 2017;8(2):141–157. https://doi.org/10.1007/s13167-017-0092-8.

  13. Polivka J Jr, Kralickova M, Polivka J Jr, Kaiser C, Kuhn W, Golubnitschaja O. Mystery of the brain metastatic disease in breast cancer patients: improved patient stratification, disease prediction and targeted prevention on the horizon? EPMA J. 2017;8(2):119–27. https://doi.org/10.1007/s13167-017-0087-59.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA. 2006;295(21):2492–502.

    Article  PubMed  CAS  Google Scholar 

  15. Anders CK, Fan C, Parker JS, Carey LA, Blackwell KL, Klauber-DeMore N, et al. Breast carcinomas arising at a young age: unique biology or a surrogate for aggressive intrinsic subtypes? J Clin Oncol. 2011;29(1):e18–20.

    Article  PubMed  Google Scholar 

  16. Colleoni M, Rotmensz N, Peruzzotti G, Maisonneuve P, Orlando L, Ghisini R, et al. Role of endocrine responsiveness and adjuvant therapy in very young women (below 35 years) with operable breast cancer and node negative disease. Ann Oncol. 2006;17(10):1497–503. https://doi.org/10.1093/annonc/mdl145.

    Article  PubMed  CAS  Google Scholar 

  17. Ahn SH, Son BH, Kim SW, Kim SI, Jeong J, Ko SS, et al. Poor outcome of hormone receptor-positive breast cancer at very young age is due to tamoxifen resistance: nationwide survival data in Korea—a report from the Korean Breast Cancer Society. J Clin Oncol. 2007;25(17):2360–8. https://doi.org/10.1200/JCO.2006.10.3754.

    Article  PubMed  Google Scholar 

  18. Wang F, Dai J, Li M, Chan WC, Kwok CC, Leung SL, et al. Risk assessment model for invasive breast cancer in Hong Kong women. Medicine (Baltimore). 2016;95(32):e4515. https://doi.org/10.1097/MD.0000000000004515.

    Article  Google Scholar 

  19. Engmann NJ, Golmakani MK, Miglioretti DL, Sprague BL, Kerlikowske K. Population-attributable risk proportion of clinical risk factors for breast cancer. Breast Cancer Surveillance Consortium. JAMA Oncol 2017. https://doi.org/10.1001/jamaoncol.2016.6326.

  20. Fabian CJ, Kimler BF, Phillips TA, Box JA, Kreutzjans AL, Carlson SE, et al. Modulation of breast cancer risk biomarkers by high-dose omega-3 fatty acids: phase II pilot study in premenopausal women. Cancer Prev Res (Phila). 2015;8(10):912–21. https://doi.org/10.1158/1940-6207.CAPR-14-0335.

    Article  PubMed Central  CAS  Google Scholar 

  21. Zhang SM, Willett WC, Selhub J, Hunter DJ, Giovannucci EL, Holmes MD, et al. Plasma folate, vitamin B6, vitamin B12, homocysteine, and risk of breast cancer. J Natl Cancer Inst. 2003;95(5):373–80.

    Article  PubMed  CAS  Google Scholar 

  22. Yeghiazaryan K, Cebioglu M, Braun M, Kuhn W, Schild HH, Golubnitschaja O. Noninvasive subcellular imaging in breast cancer risk assessment: construction of diagnostic windows. Personalized Med. 2011;8(3):321–30.

    Article  Google Scholar 

  23. Golubnitschaja O, Yeghiazaryan K, Costigliola V, Trog D, Braun M, Debald M, et al. Risk assessment, disease prevention and personalised treatments in breast cancer: is clinically qualified integrative approach in the horizon? EPMA J. 2013;4(1):6. https://doi.org/10.1186/1878-5085-4-6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Golubnitschaja-Labudova O, Liu R, Decker C, Zhu P, Haefliger IO, Flammer J. Altered gene expression in lymphocytes of patients with normal-tension glaucoma. Curr Eye Res. 2000;21:867–76.

    Article  PubMed  CAS  Google Scholar 

  25. te Poele Pothoff MT, van den Berg M, Franken DG, Boers GH, Jakobs C, de Kroon IF, et al. Three different methods for the determination of total homocysteine in plasma. Ann Clin Biochem. 1995;32:218–20.

    Article  Google Scholar 

  26. Braun M, Fountoulakis M, Papadopoulou A, Vougas K, Seidel I, Höller T, et al. Down-regulation of microfilamental network-associated proteins in leukocytes of breast cancer patients: potential application to predictive diagnostics. Cancer Genomics Proteomics 2009;6:31–40

    PubMed  CAS  Google Scholar 

  27. Golubnitschaja O, Yeghiazaryan K, Abraham JA, Schild HH, Costigliola V, Debald D, et al. Breast cancer risk assessment: a non-invasive multiparametric approach to stratify patients by MMP-9 serum activity and RhoA expression patterns in circulating leucocytes. Amino Acids. 2017;49(2):273–81. https://doi.org/10.1007/s00726-016-2357-2.

    Article  PubMed  CAS  Google Scholar 

  28. Golubnitschaja O, Mönkemann H, Kim K, Mozaffari MS. Depletion of taurine induces DNA damage and expression of checkpoint genes p21WAF1/CIP1 and 14-3-3 σ in rat cardiomyocytes. Biochem Pharmacol 2003;66:511–517

  29. Brunet J-P, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery using matrix factorization. PNAS. 2004;101(12):4164–9. https://doi.org/10.1073/pnas.0308531101.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinformatics. 2010;11:367. https://doi.org/10.1186/1471-2105-11-367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comp Appl Math. 1987;20:53–65.

    Article  Google Scholar 

  32. Sokal RR, Rohlf FJ. The comparison of dendrograms by objective methods. Taxon. 1962;11(2):33–40. https://doi.org/10.2307/1217208.

    Article  Google Scholar 

  33. Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal Nonlinear Methods Data Mining. 2002;38(4):367–78.

    Article  Google Scholar 

  34. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1164–88.

    Google Scholar 

  35. Guldberg TL, Christensen S, Zachariae R, Jensen AB. Prognostic factors in early breast cancer associated with body mass index, physical functioning, physical activity, and comorbidity: data from a nationwide Danish cohort. Breast Cancer Res Treat. 2017;162(1):159–67. https://doi.org/10.1007/s10549-016-4099-y.

    Article  PubMed  Google Scholar 

  36. Awadelkarim KD, Aceto G, Veschi S, Elhaj A, Morgano A, Mohamedani AA, et al. BRCA1 and BRCA2 status in a Central Sudanese series of breast cancer patients: interactions with genetic, ethnic and reproductive factors. Breast Cancer Res Treat. 2007;102(2):189–99.

    Article  PubMed  CAS  Google Scholar 

  37. Polak P, Kim J, Braunstein LZ, Karlic R, Haradhavala NJ, Tiao G, et al. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat Genet. 2017;49:1476–86. https://doi.org/10.1038/ng.3934.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Mencalha A, Victorino VJ, Cecchini R, Panis C. Mapping oxidative changes in breast cancer: understanding the basic to reach the clinics. Anticancer Res. 2014;34(3):1127–40.

    PubMed  CAS  Google Scholar 

  39. Ray G, Batra S, Shukla NK, Deo S, Raina V, Ashok S, et al. Lipid peroxidation, free radical production and antioxidant status in breast cancer. Breast Cancer Res Treat. 2000;59(2):163–70.

    Article  PubMed  CAS  Google Scholar 

  40. Deng J, Lü S, Liu H, Liu B, Jiang C, Xu Q, et al. Homocysteine activates B cells via regulating PKM2-dependent metabolic reprogramming. J Immunol. 2017;198(1):170–83. https://doi.org/10.4049/jimmunol.1600613.

    Article  PubMed  CAS  Google Scholar 

  41. Lee YJ, Chiu CC, Ke CY, Tien N, Lin PK. Homocysteine facilitates prominent polygonal angiogenetic networks of a choroidal capillary sprouting model. Invest Ophthalmol Vis Sci. 2017;58(10):4052–63. https://doi.org/10.1167/iovs.17-22308.

    Article  Google Scholar 

  42. Wang ZS, Jin H, Wang DM. Influence of hydrogen sulfide on zymogen activation of homocysteine-induced matrix metalloproteinase-2 in H9C2 cardiocytes. Asian Pac J Trop Med. 2016;9(5):489–93. https://doi.org/10.1016/j.apjtm.2016.03.023.

    Article  PubMed  CAS  Google Scholar 

  43. Ranogajec I, Jakić-Razumović J, Puzović V, Gabrilovac J. Prognostic value of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and aminopeptidase N/CD13 in breast cancer patients. Med Oncol. 2012;29(2):561–9. https://doi.org/10.1007/s12032-011-9984-y.

    Article  PubMed  CAS  Google Scholar 

  44. Gari HH, DeGala GD, Ray R, Lucia MS, Lambert JR. PRL-3 engages the focal adhesion pathway in triple-negative breast cancer cells to alter actin structure and substrate adhesion properties critical for cell migration and invasion. Cancer Lett. 2016;380(2):505–12. https://doi.org/10.1016/j.canlet.2016.07.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Harvie MN, Sims AH, Pegington M, Spence K, Mitchell A, Vaughan AA, et al. Intermittent energy restriction induces changes in breast gene expression and systemic metabolism. Breast Cancer Res. 2016;18(1):57. https://doi.org/10.1186/s13058-016-0714-4.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dr. H.J. Blom for measurements of homocysteine in blood plasma. The authors thank Dr. M. Fountoulakis and Dr. A. Papadopoulou for proteomic expertise strongly supported the project performance. Further, authors thank Ms. G. Windisch-Schuster for performing the Western blot analysis.

Funding

The study funding has been performed by the Breast Cancer Research Centre, University of Bonn, Germany. KY has been awarded a fellowship by the European Association for Predictive, Preventive and Personalised Medicine (EPMA, Belgium).

Author information

Authors and Affiliations

Authors

Contributions

OG created the concepts of the project and drafted the article. HF established the approach of machine learning applied to the project, and SP implemented the approach. KY carried out molecular biological investigations. HF and OG made the results interpretation. CK provided expertise in breast cancer. WK supervised the project with clinical expertise in breast cancer management.

Corresponding author

Correspondence to Olga Golubnitschaja.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethical approval

All the patient investigations conformed to the principles outlined in the Declaration of Helsinki and have been performed with the permission (Nr. 148/05) released by the responsible Ethic’s Committee of the Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn. Human rights have been obligatory protected during the entire duration of the project according to the European standards. All the patients were informed about the purposes of the study and have signed their “consent of the patient”. This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fröhlich, H., Patjoshi, S., Yeghiazaryan, K. et al. Premenopausal breast cancer: potential clinical utility of a multi-omics based machine learning approach for patient stratification. EPMA Journal 9, 175–186 (2018). https://doi.org/10.1007/s13167-018-0131-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-018-0131-0

Keywords

Navigation