Skip to main content
Log in

The Mismatch of Intrinsic Fluctuations and the Static Assumptions of Linear Statistics

  • Published:
Review of Philosophy and Psychology Aims and scope Submit manuscript

Abstract

The social and cognitive science replication crisis is partly due to the limitations of commonly used statistical tools. Inferential statistics require that unsystematic measurement variation is independent of system history, and weak relative to systematic or causal sources of variation. However, contemporary systems research underscores the dynamic, adaptive nature of social, cognitive, and behavioral systems. Variation in human activity includes the influences of intrinsic dynamics intertwined with changing contextual circumstances. Conventional inferential techniques presume milder forms of variability, such as unsystematic measurement error, as in a Gaussian distribution. Inferential statistics indicate an elementary Newtonian cause-effect metaphor for change that is inconsistent with known principles of change in complex systems. Pattern formation in self-organizing systems and quantum probability are used to illustrate theoretical metaphors that instantiate alternative notions of change in complex systems. Inferential statistics and related techniques are crucial scientific resources. However, in the social and behavioral sciences, they must be practiced in conjunction with an appropriate general systems framework that accommodates intrinsic fluctuations and contextual adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aks, D.J., G.J. Zelinsky, and J.C. Sprott. 2002. Memory across eye-movements: 1/ƒα dynamic in visual search. Nonlinear Dynamics, Psychology, and Life Sciences 6: 1–25. https://doi.org/10.1167/1.3.230.

    Article  Google Scholar 

  • Amon, M.J., and J.G. Holden. 2016. Fractal scaling and implicit bias: A conceptual replication of Correll (2008). In Proceedings of the 38th Annual Conference of the Cognitive Science Society, ed. A. Papafragou, D. Grodner, D. Mirman, and J.C. Trueswell, 1553–1558. Philadelphia: Cognitive Science Society.

    Google Scholar 

  • Amon, M.J., O. Pavlov, and J.G. Holden. 2018. Synchronization and fractal scaling as resources for cognitive control. Cognitive Systems Research. https://doi.org/10.1016/j.cogsys.2018.04.010.

  • Andrews, S., and A. Heathcote. 2001. Distinguishing common and task-specific processes in word identification: A matter of some moment? Journal of Experimental Psychology: Human Perception and Performance 27: 514–544. https://doi.org/10.1037//0278-7393.27.2.514.

    Article  Google Scholar 

  • Atmanspacher, H., H. Römer, and H. Walach. 2002. Weak quantum theory: Complementarity and entanglement in physics and beyond. Foundations of Physics 32: 379–406.

    Google Scholar 

  • Ausloos, M., P. Clippe, and C. Laurent. 1990. Homogenous and fractal behavior of superconducting fluctuations in the electrical resistivity of granular ceramic superconductors. Physical Review B 41: 9509–9509.

    Google Scholar 

  • Bak, P. 1996. How nature works: The science of self-organized criticality. New York: Springer.

    Google Scholar 

  • Baken, R.J. 1990. Irregularity of vocal period and amplitude: A first approach to the fractal analysis of voice. Journal of Voice 4: 185–197. https://doi.org/10.1016/S0892-1997(05)80013-X.

    Article  Google Scholar 

  • Balota, D.A., and J.I. Chumbley. 1984. Are lexical decisions a good measure of lexical access? The role of word frequency in the neglected decision stage. Journal of Experimental Psychology: Human Perception and Performance 10: 340–357. https://doi.org/10.1037//0096-1523.10.3.340.

    Article  Google Scholar 

  • Balota, D.A., and D.H. Spieler. 1999. Word frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency. Journal of Experimental Psychology: General 128: 32–55. https://doi.org/10.1037/0096-3445.128.1.32.

    Article  Google Scholar 

  • Benjamin, D.J., J.O. Berger, M. Johannesson, B.A. Nosek, E.J. Wagenmakers, R. Berk, et al. 2018. Redefine statistical significance. Nature Human Behaviour 2 (1): 6–10.

    Google Scholar 

  • Blank, M., and R. Goodman. 2011. DNA is a fractal antenna in electromagnetic fields. International Journal of Radiation Biology 87: 409–415. https://doi.org/10.3109/09553002.2011.538130.

    Article  Google Scholar 

  • Camazine, S., N.R. Franks, J. Sneyd, E. Bonabeau, J.-L. Deneubourg, and G. Theraulaz. 2001. Self-organization in biological systems. Princeton: Princeton University Press.

    Google Scholar 

  • Di leva, A., F. Grizzi, H. Jelinek, A.J. Pellionisz, and G.A. Losa. 2013. Fractals in the neurosciences, part I: General principles and basic neurosciences. Neuroscientist 20: 403–417. https://doi.org/10.1177/1073858413513927.

    Article  Google Scholar 

  • Digman, J.M. 1990. Personality structure: Emergence of the five-factor model. Annual Review of Psychology 41: 417–440. https://doi.org/10.1146/annurev.ps.41.020190.002221.

    Article  Google Scholar 

  • Efron, B., and R.J. Tibshirani. 1993. An introduction of the bootstrap. New York: Chapman & Hall.

    Google Scholar 

  • Favela, L.H., C.A. Coey, E.R. Griff, and M.J. Richardson. 2016. Fractal analysis reveals subclasses of neurons and suggests an explanation of their spontaneous activity. Neuroscience Letters 626: 54–58. https://doi.org/10.1016/j.neulet.2016.05.017.

    Article  Google Scholar 

  • Flach, J.M., S. Dekker, and P.J. Stappers. 2007. Playing twenty questions with nature (the surprise version): Reflections on the dynamics of experience. Theoretical Issues in Ergonomics Science 9 (2): 125–154. https://doi.org/10.1080/14639220601095353.

    Article  Google Scholar 

  • Forster, K. I., & Forster, J. C. 1996. DMASTR (version 2.16) [computer program]. Available at http://www.u.arizona.edu/~kforster/dmastr/dmastr.htm. Retrieved 9/1/1996

  • Fraiman, D., P. Balenzuela, J. Foss, and D.R. Chialvo. 2009. Ising-like dynamics in large-scale functional brain networks. Physical Review E 79 (6): 061922.

    Google Scholar 

  • Free, S.L., S.M. Sisodiya, J.J. Cook, D.R. Fish, and S.D. Shorvon. 1996. Three-dimensional fractal analysis of the white matter surface from magnetic resonance images of the human brain. Cerebral Cortex 6: 830–836.

    Google Scholar 

  • Frette, V., K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang, and P. Meakin. 1996. Avalanche dynamics in a pile of rice. Nature 379: 49–52.

    Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. 2009. The elements of statistical learning: Data mining, inference, and prediction. Springer series in statistics. Retrieved from http://www-stat.stanford.edu/~tibs/ElemStatLearn/.

  • Gabora, L., and D. Aerts. 2002. Contextualizing concepts using a mathematical generalization of the quantum formalism. Journal of Experimental and Theoretical Artificial Intelligence 14: 327–358. https://doi.org/10.1080/09528130210162253.

    Article  Google Scholar 

  • Gould, S.J. 1996. The mismeasure of man. New York: WW Norton & Company.

    Google Scholar 

  • Guastello, S.J., M.E. Koopmans, and D.E. Pincus. 2009. Chaos and complexity in psychology: The theory of nonlinear dynamical systems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Handel, P.H., and A.L. Chung. 1993. Noise in physical systems and 1/"f" fluctuations. New York: American Institute of Physics.

    Google Scholar 

  • Hasselman, F. 2015. Beyond the boundary. An analysis of verisimilitude and causal ontology of scientific claims: Etiologies of developmental dyslexia as a case in point (Unpublished doctoral dissertation). Radboud University Nijmegen, Netherlands. Retrieved from https://doi.org/10.6084/m9.figshare.928517.

  • Head, M.L., L. Holman, R. Lanfear, A.T. Kahn, and M.D. Jennions. 2015. The extent and consequences of p-hacking in science. PLoS Biology 13: e1002106. https://doi.org/10.1371/journal.pbio.1002106.

    Article  Google Scholar 

  • Holden, J.G. 2002. Fractal characteristics of response time variability. Ecological Psychology 14: 53–86.

    Google Scholar 

  • Holden, J.G., and S. Rajaraman. 2012. The self-organization of a spoken word. Frontiers in Psychology 3: 1–24. https://doi.org/10.3389/fpsyg.2012.00209.

    Article  Google Scholar 

  • Holden, J.G., G. Van Orden, and M.T. Turvey. 2009. Dispersion of response times reveals cognitive dynamics. Psychological Review 116: 318–342. https://doi.org/10.1037/a0014849.

    Article  Google Scholar 

  • Holden, J.G., I. Choi, P.G. Amazeen, and G. Van Orden. 2011. Fractal 1/ƒ dynamics suggest entanglement of measurement and human performance. Journal of Experimental Psychology: Human Perception & Performance 37: 935–948. https://doi.org/10.1037/a0020991.

    Article  Google Scholar 

  • Holden, J.G., J.A. Riley, J. Gao, and K. Torre. 2013. Fractal analyses: Statistical and methodological innovations and best practices. Frontiers in Physiology 4: 97. https://doi.org/10.3389/fphys.2013.00097.

    Article  Google Scholar 

  • Hollis, J., H. Kloos, and G. Van Orden. 2009. Origins of order in cognitive activity. In Chaos and complexity in psychology: The theory of nonlinear dynamical systems, ed. S.J. Guastello, M. Koopmans, and D. Pincus, 206–241. Cambridge: Cambridge University Press.

    Google Scholar 

  • Huey, E.B. 1908. The psychology and pedagogy of reading. New York: MacMillan.

    Google Scholar 

  • Ioannidis, J.P.A. 2005. Why most published research findings are false. PLoS Medicine 2: e124. https://doi.org/10.1371/journal.pmed.0020124.

    Article  Google Scholar 

  • Jensen, H.J. 1998. Self-organized criticality: Emergent complex behavior in physical and biological systems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kauffman, S. 1995. At home in the universe: The search for the laws of self-organization and complexity. New York: Oxford University Press.

    Google Scholar 

  • Kello, C.T. 2013. Critical branching neural networks. Psychological Review 120: 230–254. https://doi.org/10.1037/a0030970.

    Article  Google Scholar 

  • Kello, C.T., G.D.A. Brown, R. Ferrer-i-Cancho, J. Holden, K. Linkenkaer-Hansen, T. Rhodes, and G.C. Van Orden. 2010. Scaling laws in cognitive sciences. Trends in Cognitive Sciences 14: 223–232. https://doi.org/10.1016/j.tics.2010.02.005.

    Article  Google Scholar 

  • Kelso, S. 1995. Dynamic patterns: The self-organization of brain and behavior. Cambridge: MIT Press.

    Google Scholar 

  • Killeen, P.R. 2005. An alternative to null-hypothesis significance tests. Psychological Science 16: 345–353.

    Google Scholar 

  • Klein, J.L. 1997. Statistical visions in time: A history of time series analysis. New York: Cambridge University Press.

    Google Scholar 

  • Konvalinka, I., D. Xygalatas, J. Bulbulia, U. Schojødt, E.-M. Jegindø, S. Wallot, G. Van Orden, and A. Roepstorff. 2011. Synchronized arousal between performers and related spectators in a fire-walking ritual. Proceedings of the National Academy of Sciences 108: 8514–8519. https://doi.org/10.1073/pnas.1016955108.

    Article  Google Scholar 

  • Kučera, H., and W.N. Francis. 1967. Computational analysis of present-day American English. Providence: Brown University Press.

    Google Scholar 

  • Kugler, P.N., and M.T. Turvey. 1987. Information, natural law and the self-assembly of rhythmic movement. Hillsdale: Erlbaum.

    Google Scholar 

  • Lakoff, G. 1987. Women, fire and dangerous things: What categories reveal about thought.

  • Luce, R.D. 1986. Response times: Their role in inferring elementary mental organization. New York: Oxford University Press.

    Google Scholar 

  • Mäkikallio, T.H., H.V. Huikuri, A. Makikallio, L.B. Sourander, R.D. Mitrani, A. Castellanos, and R.J. Myerburg. 2001. Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. Journal of the American College of Cardiology 37: 1395–1402.

    Google Scholar 

  • Mandelbrot, B.B. 1983. The fractal geometry of nature. San Francisco: W. H. Freeman and Company.

    Google Scholar 

  • Mitchell, J. 2014. On the emptiness of failed replications. Retrieved from http://wjh.harvard.edu/~jmitchel/writing/failed_science.htm

  • Mogiliansky, A.L., S. Zamir, and H. Zwirn. 2009. Type indeterminacy: A model of the KT (Kahneman–Tversky)-man. Journal of Mathematical Psychology 53 (5): 349–361.

    Google Scholar 

  • Open Science Collaboration. 2015. Estimating the reproducibility of psychological science. Science 349: aac4716. https://doi.org/10.1126/science.aac4716.

    Article  Google Scholar 

  • Peng, C.-K., S. Havlin, J.M. Hausdorff, J.E. Mietus, H.E. Stanley, and A.L. Goldberger. 1995. Fractal mechanisms and heart rate dynamics: Long-range correlations and their breakdown with disease. Journal of Electrocardiology 28: 59–65.

    Google Scholar 

  • Press, W.H. 1978. Flicker noises in astronomy and elsewhere. Comments on Astrophysics 7 (4): 103–119.

    Google Scholar 

  • Ratcliff, R. 1978. A theory of memory retrieval. Psychological Review 85: 59–108. https://doi.org/10.1037/0033-295X.85.2.59.

    Article  Google Scholar 

  • Ratcliff, R. 1979. Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin 86: 446–461.

    Google Scholar 

  • Ratcliff, R., P. Gomez, and G. McKoon. 2004. A diffusion model account of the lexical decision task. Psychological Review 111: 159–182. https://doi.org/10.1037/0033-295X.111.1.159.

    Article  Google Scholar 

  • Riley, M.A., and J.G. Holden. 2012. Dynamics of cognition. Wiley Interdisciplinary Reviews: Cognitive Science 3: 593–606.

    Google Scholar 

  • Rubalcaba, J.J.O. 1997. Fractal analysis of climatic data: Annual precipitation records in Spain. Theoretical and Applied Climatology 56: 83–87.

    Google Scholar 

  • Rubin, D.B. 1981. The Bayesian bootstrap. The Annals of Statistics 9: 130–134. https://doi.org/10.1214/aos/1176345338.

    Article  Google Scholar 

  • Sapolsky, R., and S. Balt. 1996. Reductionism and variability in data: A meta-analysis. Perspectives in Biology and Medicine 39: 193–203.

    Google Scholar 

  • Scafetta, N., L. Griffin, and B.J. West. 2003. Holder exponent spectra for human gait. Physica A: Statistical Mechanics and its Applications 328: 561–583. https://doi.org/10.1016/S0378-4371(03)00527-2.

    Article  Google Scholar 

  • Schmiedek, F., K. Oberauer, O. Wilhelm, H.M. Süß, and W.W. Wittmann. 2007. Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General 136: 414–429. https://doi.org/10.1037/0096-3445.136.3.414.

    Article  Google Scholar 

  • Schwarz, W. 2001. The ex-Wald distribution as a descriptive model of response times. Behavior Research Methods, Instruments, & Computers 33: 457–469.

    Google Scholar 

  • Shanon, B. 1993. The representational and the presentational: An essay on cognition and the study of the mind. New York: Harvester Wheatsheaf.

    Google Scholar 

  • Stambolieva, K. 2011. Fractal properties of postural sway during quiet stance with changed visual and proprioceptive inputs. Journal of Physiological Science 61: 123–130. https://doi.org/10.1007/s12576-010-0129-4.

    Article  Google Scholar 

  • Stephen, D.G., and J.A. Dixon. 2008. The self-organization of insight: Entropy and power laws in problem solving. The Journal of Problem Solving 2: 72–101. https://doi.org/10.7771/1932-6246.1043.

    Article  Google Scholar 

  • Stephen, D.G., and G.C. Van Orden. 2012. Searching for general principles in cognitive performance: Reply to commentators. Topics in Cognitive Science 4: 94–102. https://doi.org/10.1111/j.1756-8765.2011.01171.x.

    Article  Google Scholar 

  • Stone, G.O., and G.C. Van Orden. 1989. Are words represented by nodes? Memory & Cognition 17: 511–524. https://doi.org/10.3758/BF03197073.

    Article  Google Scholar 

  • Stone, G.O., and G.C. Van Orden. 1993. Strategic control of processing in word recognition. Journal of Experimental Psychology: Human Perception and Performance 19: 744–774. https://doi.org/10.1037/0096-1523.19.4.744.

    Article  Google Scholar 

  • Thelen, E., and L.B. Smith. 1994. A dynamic systems approach to the development of cognition and action. Cambridge: MIT Press.

    Google Scholar 

  • Townsend, J.T., and F.G. Ashby. 1983. The stochastic modeling of elementary psychological processes. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tschacher, W., and J.P. Dauwalder. 2003. The dynamical systems approach to cognition. New Jersey: World Scientific.

    Google Scholar 

  • Uttal, W.R. 1990. On some two-way barriers between models and mechanisms. Perception & Psychophysics 48: 188–203. https://doi.org/10.3758/BF03207086.

    Article  Google Scholar 

  • Uttal, W.R. 2001. The new phrenology: The limits of localizing cognitive processes in the brain. Cambridge: MIT Press.

    Google Scholar 

  • Van Orden, G.C., and J.G. Holden. 2002. Intentional contents and self-control. Ecological Psychology 14: 87–109. https://doi.org/10.1080/10407413.2003.9652753.

    Article  Google Scholar 

  • Van Orden, G.C., M.A. Jansen op Haar, and A.M.T. Bosman. 1997. Complex dynamic systems also predict dissociations, but they do not reduce to autonomous components. Cognitive Neuropsychology 14: 131–165. https://doi.org/10.1080/026432997381646.

    Article  Google Scholar 

  • Van Orden, G.C., J.G. Holden, M.N. Podgonik, and C.S. Aitchison. 1999. What swimming says about reading: Coordination, context and homophone errors. Ecological Psychology 11: 45–79. https://doi.org/10.1207/s15326969eco1101_2.

    Article  Google Scholar 

  • Van Orden, G.C., B.F. Pennington, and G.O. Stone. 2001. What do double dissociations prove? Cognitive Science 25: 111–172. https://doi.org/10.1207/s15516709cog2501_5.

    Article  Google Scholar 

  • Van Orden, G.C., J.G. Holden, and M.T. Turvey. 2003. Self-organization of cognitive performance. Journal of Experimental Psychology: General 132: 331–350. https://doi.org/10.1037/0096-3445.132.3.331.

    Article  Google Scholar 

  • Van Orden, G.C., J.G. Holden, and M.T. Turvey. 2005. Human cognition and 1/ƒα scaling. Journal of Experimental Psychology: General 134: 117–123. https://doi.org/10.1037/0096-3445.134.1.117.

    Article  Google Scholar 

  • Van Orden, G.C., C.T. Kello, and J.G. Holden. 2010. Situated behavior and the place of measurement in psychological theory. Ecological Psychology 22: 24–43. https://doi.org/10.1080/10407410903493145.

    Article  Google Scholar 

  • Van Orden, G., G. Hollis, and S. Wallot. 2012. The blue-collar brain. Frontiers in Physiology 3 (207). https://doi.org/10.3389/fphys.2012.00207.

  • van Rooij, M., and J.G. Holden. 2013. Correspondence are cognitive functions localizable? Response. Journal of Economic Perspectives 27 (2): 250–252.

    Google Scholar 

  • van Rooij, M.M., B.A. Nash, S. Rajaraman, and J.G. Holden. 2013. A fractal approach to dynamic inference and distribution analysis. Frontiers in Physiology 4: 1–16. https://doi.org/10.3389/fphys.2013.00001.

    Article  Google Scholar 

  • Verhagen, J., and E.-J. Wagenmakers. 2014. Bayesian tests to quantify the results of a replication attempt. Journal of Experimental Psychology: General 143: 1457–1475. https://doi.org/10.1037/a0036731.

    Article  Google Scholar 

  • Wagenmakers, E.-J., R. Wetzels, D. Borsboom, and H.L.J. van der Maas. 2011. Why psychologists must change the way they analyze their data: The case of psi: Comment on Bem (2011). Journal of Personality and Social Psychology 100: 426–432. https://doi.org/10.1037/a0022790.

    Article  Google Scholar 

  • Wallot, S., and D.G. Kelty-Stephen. 2017. Interaction-dominant causation in mind and brain, and its implication for questions of generalization and replication. Minds and Machines 28: 353–374. https://doi.org/10.1007/s11023-017-9455-0.

    Article  Google Scholar 

  • Wan, S., Q. Liu, J. Zou, and W. He. 2016. Nonlinearity and fractal properties of climate change during the past 500 years in northwestern China. Discrete Dynamics in Nature and Society 2016: 1–7. https://doi.org/10.1155/2016/4269431.

    Article  Google Scholar 

  • Wang, Z., T. Solloway, R.M. Shiffrin, and J.R. Busemeyer. 2014. Context effects produced by question orders reveal quantum nature of human judgments. Proceedings of the National Academy of Sciences 111: 9431–9436. https://doi.org/10.1073/pnas.1407756111.

    Article  Google Scholar 

  • Watkins, M.J. 1990. Mediationism and the obfuscation of memory. American Psychologist 45: 328–335. https://doi.org/10.1037//0003-066X.45.3.328.

    Article  Google Scholar 

  • Wijnants, M.L. 2014. A review of theoretical perspectives in cognitive science on the presence of scaling in coordinated physiological and cognitive processes. Journal of Nonlinear Dynamics 2014: 962043. https://doi.org/10.1155/2014/962043.

    Article  Google Scholar 

  • Yates, F.E. 1987. Self-organizing systems: The emergence of order. New York: Plenum Press.

    Google Scholar 

  • Yu, L., Grebogi, C., & Ott, E. 1989. Fractal structure in physical space in the dispersal of particles in fluids. In L. Lam & H. C. Morris. Nonlinear Structures in Physical Systems: Pattern Formation, Chaos, and Waves (223–231). Proceedings of the Second Woodward Conference: San Jose State University.

  • Zhao, G., K. Denisova, P. Sehatpour, J. Long, W. Gui, J. Qiao, D.C. Javitt, and Z. Wang. 2016. Fractal dimension analysis of subcortical gray matter structures in schizophrenia. PLoS ONE 11 (5): e0155415. https://doi.org/10.1371/journal.pone.0155415.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Holden.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amon, M.J., Holden, J.G. The Mismatch of Intrinsic Fluctuations and the Static Assumptions of Linear Statistics. Rev.Phil.Psych. 12, 149–173 (2021). https://doi.org/10.1007/s13164-018-0428-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13164-018-0428-x

Navigation