Maps with finitely many critical points into high dimensional manifolds

Abstract

Assume that there exists a smooth map between two closed manifolds \(M^m\rightarrow N^k\), where \(2\le k\le m\le 2k-1\), with only finitely many singular points, all of which are cone-like. If \((m,k)\not \in \{(2,2), (4,3), (5,3), (8,5), (16,9)\}\), then \(M^m\) admits a locally trivial topological fibration over \(N^k\) and there exists a smooth map \(M^m\rightarrow N^k\) with at most one critical point.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Andrica, D., Funar, L.: On Smooth maps with finitely many critical points, J. London Math. Soc. 69, 783-800 (2004), Addendum 73 (2006), 231–236

  2. 2.

    Andrica, D., Funar, L., Kudryavtseva, E.: On the minimal number of critical points of maps between closed manifolds, Russian Journal of Mathematical Physics, special issue Conference for the 65-th birthday of Nicolae Teleman, Brasselet, J.-P., Legrand, A., Longo, R., Mishchenko, A. eds. 16 (2009), 363–370

  3. 3.

    Araújo Dos Santos, R.N., Hohlenwerger, M.A.B., Saeki, O., Souza, T.O.: New examples of Neuwirth–Stallings pairs and non-trivial real Milnor fibrations. Ann. Institut Fourier 66, 83–104 (2016)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Church, P.T., Lamotke, K.: Non-trivial polynomial isolated singularities. Indag. Math. 37, 149–154 (1975)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Church, P.T., Timourian, J.G.: Differentiable maps with 0-dimensional critical set I. Pacific J. Math. 41, 615–630 (1972)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Church, P.T., Timourian, J.G.: Differentiable maps with 0-dimensional critical set II. Indiana Univ. Math. J. 24, 17–28 (1974)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Curtis, M.L.: Cartesian products with intervals. Proc. Am. Math. Soc. 12, 819–820 (1961)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Durfee, A.H.: Fibered knots and algebraic singularities. Topology 13, 47–59 (1974)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Funar, L.: Global classification of isolated singularities in dimensions (4,3) and (8,5). Ann. Scuola Norm. Sup. Pisa Cl. Sci. X, 819–861 (2011)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Funar, L., Pintea, C., Zhang, P.: Smooth maps with finitely many critical points in dimensions \((4,3)\) and \((8,5)\). Proc. Am. Math. Soc. 138, 355–365 (2010)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Funar, L., Pintea, C.: Manifolds which admit maps with finitely many critical points into spheres of small dimensions. Michigan Math. J. 67, 585–615 (2018)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Haefliger, A.: Plongements différentiables des variétés dans le domaine stable. Sem. Bourbaki exp.245, 63–77 (1964)

    MATH  Google Scholar 

  13. 13.

    Kato, M.: A classification of simple spinnable structures on a 1-connected Alexander manifold. J. Math. Soc. Jpn 26, 454–463 (1974)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kauffman, L., Neumann, W.: Products of knots, branched fibrations and sums of singularities. Topology 16, 369–393 (1977)

    MathSciNet  Article  Google Scholar 

  15. 15.

    King, H.C.: Topological type of isolated singularities. Ann. Math. 107, 385–397 (1978)

    MathSciNet  Article  Google Scholar 

  16. 16.

    King, H.C.: Topology of isolated critical points of functions on singular spaces, Stratifications, singularities and differential equations, II (Marseille, 1990; Honolulu, HI, 1990), 63–72, Trotman, D., Wilson, L.C. eds., Travaux en Cours, 55, Hermann, Paris, (1997)

  17. 17.

    Kneser, H., Kneser, M.: Reell-analytische Strukturen der Alexandroff–Halbgeraden und der Alexandroff–Geraden. Arch. Math. 11, 104–106 (1960)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Looijenga, E.: A note on polynomial isolated singularities. Indag. Math. 33, 418–421 (1971)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Mazur, B.: A note on some contractible 4-manifolds. Ann. Math. 73, 221–228 (1961)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Milnor, J.: Singular Points of Complex Hypersurfaces. Princeton University Press, Princeton (1968)

    Google Scholar 

  21. 21.

    Poenaru, V.: La décomposition de l’hypercube en produit topologique. Bull. Soc. Math. France 88, 113–129 (1960)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Smale, S.: On the structure of manifolds. Am. J. Math. 83, 387–399 (1962)

    Article  Google Scholar 

  23. 23.

    Stallings, J.: Polyhedral homotopy spheres. Bull. Am. Math. Soc. 66, 485–488 (1960)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Takens, F.: Isolated critical points of \(\cal{C}^{\infty }\) and \(\cal{C}^{\omega }\) functions. Indag. Math. 28, 238–243 (1967)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Weinberger, S.: Homology manifolds, Handbook of geometric topology, 1085–1102. North-Holland, Amsterdam (2002)

    Google Scholar 

  26. 26.

    Zeeman, E.C.: The generalized Poincaré conjecture. Bull. Am. Math. Soc. 67, 270 (1961)

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to Norbert A’Campo, Cornel Pintea, Nicolas Dutertre, Valentin Poenaru and Mihai Tibǎr for useful discussions and to the referees for corrections and helpful remarks. The author was partially supported by the GDRI Eco-Math.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Louis Funar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Funar, L. Maps with finitely many critical points into high dimensional manifolds. Rev Mat Complut (2020). https://doi.org/10.1007/s13163-020-00362-y

Download citation

Keywords

  • Isolated singularity
  • Open book decomposition
  • Poenaru–Mazur contractible manifold

Mathematics Subject Classification

  • 57R45
  • 57 R70
  • 58K05