Linear and bilinear operators and their zero-sets


We study the extent to which several classical results relating linear or multilinear forms and their zero-sets can be generalised to linear or bilinear operators with values in \({\mathbb {R}}^n\). We find some analogues of the classical theorems, and also some restrictions.

This is a preview of subscription content, access via your institution.


  1. 1.

    Adams, J.F.: Vector fields on spheres. Ann. Math. 75(2), 603–632 (1962)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Adams, J.F., Lax, P.D., Phillips, R.S.: On matrices whose real linear combinations are non-singular. Proc. Am. Math. Soc. 16, 318–322 (1965)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Adams, J.F., Lax, P.D., Phillips, R.S.: Correction to on matrices whose real linear combinations are nonsingular. Proc. Am. Math. Soc. 17, 945–947 (1966)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Aron, R., Cardwell, A., García, D., Zalduendo, I.: A multilinear Phelps’ lemma. Proc. Am. Math. Soc. 135(8), 2549–2554 (2007)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Aron, R., Downey, L., Maestre, M.: Zero sets and linear dependence of multilinear forms. Note Mat. 25(1), 49–54 (2006)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    James, I.M.: Spaces associated with Stiefel manifolds. Proc. London Math. Soc. 9(3), 115–140 (1959)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Kato, T.: Perturbation Theory for Linear Operators. Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer, New York (1966)

  8. 8.

    Phelps, R.: A representation theorem for bounded convex sets. Proc. Am. Math. Soc. 11, 976–983 (1960)

    MathSciNet  Article  Google Scholar 

Download references


The authors would like to thank Professor Manuel Maestre Vera and Professor Domingo García for their fruitful conversations during the preparation of this document.

Author information



Corresponding author

Correspondence to Damián Pinasco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported partially by PIP 112 201301 00422 CO (CONICET - Argentina).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pinasco, D., Zalduendo, I. Linear and bilinear operators and their zero-sets. Rev Mat Complut 34, 131–149 (2021).

Download citation


  • Zero-sets
  • Linear operators
  • Bilinear operators
  • Phelps’ Lemma

Mathematics Subject Classification

  • Primary 46B20
  • Secondary 47H60