Advertisement

Revista Matemática Complutense

, Volume 31, Issue 2, pp 407–447 | Cite as

An optimal matching problem with constraints

  • J. M. Mazón
  • J. D. Rossi
  • J. Toledo
Article
  • 105 Downloads

Abstract

We deal with an optimal matching problem with constraints, that is, we want to transport two measures with the same total mass in \({\mathbb {R}}^N\) to a given place (the target set), where they will match and in which we have constraints on the amount of matter we can take to points in the target set. This transport has to be done optimally, minimizing the total transport cost, that in our case is given by the sum of the Euclidean distances that each measure is transported. Here we show that such a problem has a solution. First, we solve the problem using mass transport arguments and next we perform a method to approximate the solution of the problem taking limit as \(p\rightarrow \infty \) in a p-Laplacian type variational problem. In the particular case in which the target set is contained in a hypersurface, we deal with an optimal transport problem through a membrane, that is, we want to transport two measures which are located in different locations separated by a membrane (the hypersurface) which only let through a predetermined amount of matter.

Keywords

Mass transport theory Matching problems p-Laplacian equation 

Mathematics Subject Classification

35J62 49J20 49J45 

Notes

Acknowledgements

The authors have been partially supported by the Spanish MINECO and FEDER, Project MTM2015-70227-P.

References

  1. 1.
    Ambrosio, L.: Lecture notes on optimal transport problems. In: Mathematical Aspects of Evolving Interfaces (Funchal, 2000), Lecture Notes in Mathematics, vol. 1812, pp. 1–52. Springer, Berlin (2003)Google Scholar
  2. 2.
    Barrett, J.W., Prigozhin, L.: Partial \(L^1\) Monge–Kantorovich problem: variational formulation and numerical approximation. Interfaces Free Bound. 11, 201–238 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)zbMATHGoogle Scholar
  4. 4.
    Carlier, G.: Duality and existence for a class of mass transportation problems and economic applications. Adv. Math. Econ. 5, 1–21 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carlier, G., Ekeland, I.: Matching for teams. Econ. Theory 42, 397–418 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Champion, T., De Pascale, L.: The Monge problem in \({\mathbb{R}}^d\). Duke Math. J. 157, 551–572 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chiappori, P.-A., McCann, R., Nesheim, L.: Hedonic prices equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness. Econ. Theory 42, 317–354 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ekeland, I.: An optimal matching problem. ESAIM COCV 11, 57–71 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ekeland, I.: Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types. Econ. Theory 42(2), 275–315 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ekeland, I.: Notes on optimal transportation. Econ. Theory 42(2), 437–459 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ekeland, I., Hecckman, J.J., Nesheim, L.: Identification and estimates of hedonic models. J. Polit. Econ. 112, S60–S109 (2004)CrossRefGoogle Scholar
  12. 12.
    Evans, L.C.: Partial Differential Equations. Graduate Studies Mathematics, vol. 19. American Mathematical Society, Providence (1998)Google Scholar
  13. 13.
    Evans, L.C.: Partial differential equations and Monge–Kantorovich mass transfer. In: Current Developments in Mathematics, 1997 (Cambridge, MA), pp. 65–126. International Press, Boston (1999)Google Scholar
  14. 14.
    Evans, L.C., Gangbo, W.: Differential equations methods for the Monge–Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137, 653 (1999)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Fan, K.: Minimax theorems. Proc. Natl. Acad. Sci. 39, 42–47 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Igbida, N., Mazón, J.M., Rossi, J.D., Toledo, J.J.: A Monge–Kantorovich mass transport problem for a discrete distance. J. Funct. Anal. 260, 3494–3534 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kantorovich, L.V.: On the tranfer of masses. Dokl. Nauk. SSSR 37, 227–229 (1942)Google Scholar
  18. 18.
    Mazón, J.M., Rossi, J.D., Toledo, J.J.: An optimal transportation problem with a cost given by the euclidean distance plus import/export taxes on the boundary. Rev. Mat. Iberoam. 30(1), 277–308 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mazón, J.M., Rossi, J.D., Toledo, J.J.: An optimal matching problem for the Euclidean distance. SIAM J. Math. Anal. 46, 233–255 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mazón, J.M., Rossi, J.D., Toledo, J.J.: Optimal matching problems with costs given by Finsler distances. Commun. Pure Appl. Anal. 14, 229–244 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mazón, J.M., Rossi, J.D., Toledo, J.J.: Optimal mass transport on metric graphs. SIAM J. Optim. 25, 1609–1632 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. AMS, Providence (2003)zbMATHGoogle Scholar
  23. 23.
    Villani, C.: Optimal Transport. Old and New. Grundlehren der MathematischenWissenschaften (Fundamental Principles of Mathematical Sciences), vol. 338. Springer, Berlin (2009)Google Scholar

Copyright information

© Universidad Complutense de Madrid 2018

Authors and Affiliations

  1. 1.Departament d’Anàlisi MatemàticaUniversidad de ValènciaValenciaSpain
  2. 2.Departamento de MatemáticasUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations