Revista Matemática Complutense

, Volume 31, Issue 2, pp 467–478 | Cite as

Extremal disc packings in compact hyperbolic surfaces

  • Ernesto Girondo


We study packings of metric discs with respect to the canonical hyperbolic metric of a compact Riemann surface of genus greater than one. We find the maximum radius of a packing as a function of the genus and the number of discs and we investigate some properties of the surfaces that contain an extremal packing.


Riemann surfaces Extremal k-packings Uniform Belyi functions Triangle groups 

Mathematics Subject Classification

30F10 52C26 



I am indebted to K. Böröczky and M. Conder for several valuable comments during the preparation of the article. Also to the reviewers for many interesting comments and questions that clearly improved the first version of the text.


  1. 1.
    Bavard, C.: Disques extrémaux et surfaces modulaires. Ann. Fac. Sci. Toulouse Math. (6) 5(2), 191–202 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bavard, C., Böröczky, K.J., Farkas, B., Prok, I., Vena, L., Wintsche, G.: Equality in László Fejes Tóth’s triangle bound for hyperbolic surfaces. Acta Sci. Math. (Szeged) 77(3–4), 669–679 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Beardon, A.F.: The Geometry of Discrete Groups, Graduate Texts in Mathematics, vol. 91. Springer, New York (1983)CrossRefGoogle Scholar
  4. 4.
    Böröczky, K.: Packing of spheres in spaces of constant curvature. Acta Math. Acad. Sci. Hungar. 32(3–4), 243–261 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Edmonds, A.L., Ewing, J.H., Kulkarni, R.S.: Torsion free subgroups of Fuchsian groups and tessellations of surfaces. Invent. Math. 69(3), 331–346 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Girondo, E., González-Diez, G.: On extremal discs inside compact hyperbolic surfaces. C. R. Acad. Sci. Paris Sér. I Math. 329(1), 57–60 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Girondo, E., González-Diez, G.: Genus two extremal surfaces: extremal discs, isometries and Weierstrass points. Isr. J. Math. 132, 221–238 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Girondo, E., González-Diez, G.: On extremal Riemann surfaces and their uniformizing Fuchsian groups. Glasg. Math. J. 44(1), 149–157 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Girondo, E., González-Diez, G.: Introduction to Compact Riemann Surfaces and dessins d’enfants. London Mathematical Society Student Texts, vol. 79. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
  10. 10.
    Girondo, E., Nakamura, G.: Compact non-orientable hyperbolic surfaces with an extremal metric disc. Conform. Geom. Dyn. 11, 29–43 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Girondo, E., Torres-Teigell, D., Wolfart, J.: Shimura curves with many uniform dessins. Math. Z. 271(3–4), 757–779 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jones, G.A., Wolfart, J.: Dessins D’enfants on Riemann Surfaces. Springer Monographs in Mathematics. Springer, Cham (2016)CrossRefzbMATHGoogle Scholar
  13. 13.
    Maclachlan, C., Rosenberger, G.: Commensurability classes of two-generator Fuchsian groups. Discrete Groups and Geometry (Birmingham. 1991), London Mathematical Society Lecture Note Series, vol. 173, pp. 171–189. Cambridge University Press, Cambridge (1992)CrossRefGoogle Scholar
  14. 14.
    Nakamura, G.: Extremal disks and extremal surfaces of genus three. Kodai Math. J. 28(1), 111–130 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nakamura, G.: Compact non-orientable surfaces of genus 4 with extremal metric discs. Conform. Geom. Dyn. 13, 124–135 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nakamura, G.: Compact non-orientable surfaces of genus 5 with extremal metric discs. Glasg. Math. J. 54(2), 273–281 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nakamura, G.: Compact Klein surfaces of genus 5 with a unique extremal disc. Conform. Geom. Dyn. 17, 39–46 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Takeuchi, K.: Arithmetic triangle groups. J. Math. Soc. Japan 29(1), 91–106 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Takeuchi, K.: Commensurability classes of arithmetic triangle groups. J. Fac. Sci. Univ. Tokyo Sect. IA Math 24(1), 201–212 (1977)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Wolfart, J.: The ‘obvious’ part of Belyi’s theorem and Riemann surfaces with many automorphisms. In: Geometric Galois Actions, 1, London Mathematical Society Lecture Note Series, vol. 242, pp. 97–112. Cambridge University Press, Cambridge (1997)Google Scholar

Copyright information

© Universidad Complutense de Madrid 2017

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad Autónoma de MadridMadridSpain
  2. 2.Instituto de Ciencias Matemáticas ICMATMadridSpain

Personalised recommendations