Advertisement

A distributed and parallel unite and conquer method to solve sequences of non-Hermitian linear systems

  • Xinzhe WuEmail author
  • Serge G. Petiton
Special Feature: Original Paper International Workshop on Eigenvalue Problems: Algorithms; Software and Applications, in Petascale Computing (EPASA2018)
  • 38 Downloads

Abstract

Many problems in science and engineering often require to solve a long sequence of large-scale non-Hermitian linear systems with different right-hand sides (RHSs) but a unique operator. Efficiently solving such problems on extreme-scale platforms requires the minimization of global communications, reduction of synchronization and promotion of asynchronous communications. Unite and Conquer GMRES/LS-ERAM (UCGLE) method (Wu and Petiton, in Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region. ACM, New York, pp 36–46,  https://doi.org/10.1145/3149457.3154481, 2018) is a suitable candidate with the reduction of global communications and the synchronization points of all computing units. It consists of three computing algorithms with asynchronous communications that allow the use of approximated eigenvalues to accelerate the convergence of solving linear systems and to improve fault tolerance. In this paper, we extend both the mathematical model and the implementation of UCGLE method to adapt to solve sequences of linear systems. The eigenvalues obtained in solving previous linear systems by UCGLE can be recycled, improved on the fly and applied to construct a new initial guess vector for subsequent linear systems, which can achieve a continuous acceleration to solve linear systems in sequence. Numerical experiments using different test matrices to solve sequences of linear systems on supercomputer Tianhe-2 indicate a substantial decrease in both computation time and iteration steps when the approximated eigenvalues are recycled to generate the initial guess vectors.

Keywords

Sequence of linear systems Linear solvers Krylov methods Unite and Conquer Iterative methods Eigenvalues 

Mathematics Subject Classification

00A69 65F10 

Notes

References

  1. 1.
    Abdel-Rehim, A.M., Morgan, R.B., Wilcox, W.: Improved seed methods for symmetric positive definite linear equations with multiple right-hand sides. Numer. Linear Algebra Appl. 21(3), 453–471 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9(1), 17–29 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Baker, A.H., Dennis, J.M., Jessup, E.R.: On improving linear solver performance: a block variant of gmres. SIAM J. Sci. Comput. 27(5), 1608–1626 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bellavia, S., Morini, B.: A globally convergent Newton-GMRES subspace method for systems of nonlinear equations. SIAM J. Sci. Comput. 23(3), 940–960 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Benner, P., Feng, L.: Recycling Krylov subspaces for solving linear systems with successively changing right-hand sides arising in model reduction. In: Model Reduction for Circuit Simulation, pp. 125–140. Springer, Berlin (2011)Google Scholar
  6. 6.
    Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput. 11(3), 450–481 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Calvetti, D., Reichel, L.: Application of a block modified Chebyshev algorithm to the iterative solution of symmetric linear systems with multiple right hand side vectors. Numer. Math. 68(1), 3–16 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Craig, R.R., Hale, A.L.: Block-Krylov component synthesis method for structural model reduction. J. Guid. Control Dyn. 11(6), 562–570 (1988)zbMATHCrossRefGoogle Scholar
  9. 9.
    Dongarra, J., Hittinger, J., Bell, J., Chacon, L., Falgout, R., Heroux, M., Hovland, P., Ng, E., Webster, C., Wild, S.: Applied mathematics research for exascale computing. Tech. rep., Lawrence Livermore National Laboratory (LLNL), Livermore (2014)Google Scholar
  10. 10.
    Emad, N., Petiton, S.: Unite and conquer approach for high scale numerical computing. J. Comput. Sci. 14, 5–14 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Essai, A., Bergére, G., Petiton, S.G.: Heterogeneous parallel hybrid GMRES/LS-Arnoldi method. In: PPSC (1999)Google Scholar
  12. 12.
    Flueck, A.J., Chiang, H.D.: Solving the nonlinear power flow equations with an inexact Newton method using GMRES. IEEE Trans. Power Syst. 13(2), 267–273 (1998)CrossRefGoogle Scholar
  13. 13.
    Gu, G.D.: A seed method for solving nonsymmetric linear systems with multiple right-hand sides. Int. J. Comput. Math. 79(3), 307–326 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Gullerud, A.S., Dodds Jr., R.H.: MPI-based implementation of a PCG solver using an EBE architecture and preconditioner for implicit, 3-D finite element analysis. Comput. Struct. 79(5), 553–575 (2001)CrossRefGoogle Scholar
  15. 15.
    Gutknecht, M.H.: Block Krylov space methods for linear systems with multiple right-hand sides: an introduction (2006)Google Scholar
  16. 16.
    He, H., Bergère, G., Petiton, S.: A hybrid GMRES/LS-Arnoldi method to accelerate the parallel solution of linear systems. Comput. Math. Appl. 51(11), 1647–1662 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Jolivet, P., Tournier, P.H.: Block iterative methods and recycling for improved scalability of linear solvers. In: SC16-International Conference for High Performance Computing, Networking, Storage and Analysis (2016)Google Scholar
  18. 18.
    Kershaw, D.S.: The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. J. Comput. Phys. 26(1), 43–65 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kilmer, M.E., De Sturler, E.: Recycling subspace information for diffuse optical tomography. SIAM J. Sci. Comput. 27(6), 2140–2166 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Knoll, D.A., Keyes, D.E.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Papadrakakis, M., Smerou, S.: A new implementation of the Lanczos method in linear problems. Int. J. Numer. Methods Eng. 29(1), 141–159 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Parks, M.L., De Sturler, E., Mackey, G., Johnson, D.D., Maiti, S.: Recycling Krylov subspaces for sequences of linear systems. SIAM J. Sci. Comput. 28(5), 1651–1674 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Saad, Y.: Least squares polynomials in the complex plane and their use for solving nonsymmetric linear systems. SIAM J. Numer. Anal. 24(1), 155–169 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Saad, Y.: On the Lanczos method for solving symmetric linear systems with several right-hand sides. Math. Comput. 48(178), 651–662 (1987)zbMATHGoogle Scholar
  25. 25.
    Saad, Y.: Numerical Methods for Large Eigenvalue Problems, Revised edn. SIAM, Philadelphia (2011)zbMATHCrossRefGoogle Scholar
  26. 26.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Simoncini, V., Gallopoulos, E.: An iterative method for nonsymmetric systems with multiple right-hand sides. SIAM J. Sci. Comput. 16(4), 917–933 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Smith, C.F., Peterson, A.F., Mittra, R.: A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields. IEEE Trans. Antennas Propag. 37(11), 1490–1493 (1989)CrossRefGoogle Scholar
  29. 29.
    Wu, X.: SMG2S Manual v1.0. Technical report, Maison de la Simulation (2018)Google Scholar
  30. 30.
    Wu, X., Petiton, S.G.: A distributed and parallel asynchronous unite and conquer method to solve large scale non-Hermitian linear systems. In: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region. ACM, New York, pp. 36–46 (2018).  https://doi.org/10.1145/3149457.3154481
  31. 31.
    Wu, X., Petiton, S.G., Lu, Y.: A parallel generator of non-Hermitian matrices computed from given spectra. In: International Conference on Vector and Parallel Processing, pp. 215–229. Springer, Berlin (2018)Google Scholar
  32. 32.
    Ye, Z., Zhu, Z., Phillips, J.R.: Generalized Krylov recycling methods for solution of multiple related linear equation systems in electromagnetic analysis. In: Proceedings of the 45th Annual Design Automation Conference. ACM, pp. 682–687 (2008)Google Scholar
  33. 33.
    Zhang, Y., Bergere, G., Petiton, S.: Large scale parallel hybrid GMRES method for the linear system on grid system. In: International Symposium on Parallel and Distributed Computing, 2008. ISPDC’08. IEEE, pp. 244–249 (2008)Google Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Maison de la SimulationGif-sur-Yvette CedexFrance
  2. 2.CRIStAL, Université de LilleVilleneuve d’AscqFrance

Personalised recommendations