Skip to main content
Log in

Boundary stabilization of first-order hyperbolic equations with input delay

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the boundary stabilization problem of first-order hyperbolic equations with input delay. In our previous work, the same problem for parabolic equations with input delay was addressed. For the hyperbolic equation, the element of time lag is similarly replaced by a transport equation and a backstepping method is employed. However, unlike in the case of the parabolic equation, it is difficult to obtain the eigenvalues and eigenfunctions of the system operator for the hyperbolic equation. Hence, we cannot construct the target system and the controller by using the finite-dimensional control theory together. In this paper, using \(C_0\)-semigroups for hyperbolic equations with nonlocal boundary condition, we show that the proposed controller is expressed by an abstract form in a Hilbert space so-called a predictor, and that the predictor makes sense under a condition. Further, for the inverse integral transformation, we obtain an interesting result on its continuity under the same condition. A numerical algorithm is also proposed for solving a non-standard hyperbolic equation appearing in our controller design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The condition of non-negativity for \(\gamma \), g, h is set for the sake of simplicity. One can consider the problem without the condition.

  2. When g(x) or h(xy) or both are large, the open-loop system becomes unstable [11].

  3. In other words, system (2) is stabilizable in finite-time T (see e.g. [4]).

References

  1. Brezis, H.: Analyse Fonctionnelle, Translated from the French by Y. Konishi under the supervision of H. Fujita. Sangyotosho, Tokyo (1988), (in Japanese)

  2. Bribiesca-Argomedo, F., Krstic, M.: Backstepping-forwarding control and observation for hyperbolic PDEs with Fredholm integrals. IEEE Trans. Autom. Control 60(8), 2145–2160 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chentouf, B., Wang, J.-M.: Boundary feedback stabilization and Riesz basis property of a 1-d first order hyperbolic linear system with \(L^{\infty }\)-coefficients. J. Diff. Equ. 246, 1119–1138 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coron, J.-M., Hu, L., Olive, G.: Stabilization and controllability of first-order integro-differential hyperbolic equations. J. Funct. Anal. 271, 3554–3587 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Curtain, R.F., Zwart, H.J.: An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, vol. 21. Springer-Verlag, New York (1995)

    Book  MATH  Google Scholar 

  6. Deutscher, J.: Finite-time output regulation for linear \(2\times 2\) hyperbolic systems using backstepping. Automatica 75, 54–62 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Di Meglio, F., Argomedo, F.B., Hu, L., Krstic, M.: Stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems. Automatica 87, 281–289 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194. Springer-Verlag, New York (2000)

    MATH  Google Scholar 

  9. Guo, B.Z., Xu, C.Z., Hammouri, H.: Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation. ESAIM: Control. Optim. Calc. Var. 18, 22–35 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, F.L.: Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Diff. Equ. 1(1), 43–56 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Krstic, M., Smyshlyaev, A.: Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst. Control Lett. 57, 750–758 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krstic, M., Smyshlyaev, A.: Boundary Control of PDEs: A Course on Backstepping Designs. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  13. Krstic, M.: Control of an unstable reaction-diffusion PDE with long input delay. Syst. Control Lett. 58, 773–782 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miller, R.K.: Nonlinear Volterra Integral Equations. W. A. Benjamin Inc, Menlo Park (1971)

    MATH  Google Scholar 

  15. Nakagiri, S.: Deformation formulas and boundary control problems of first-order Volterra integro-differential equations with nonlocal boundary conditions. IMA J. Math. Control Inform. 30, 345–377 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York (1983)

    Book  MATH  Google Scholar 

  17. Sano, H.: Exponential stability of a mono-tubular heat exchanger equation with output feedback. Syst. Control Lett. 50, 363–369 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sano, H.: On reachability of parallel-flow heat exchanger equations with boundary inputs. Proc. Jpn. Acad. 83A(1), 1–4 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Sano, H.: Neumann boundary stabilization of one-dimensional linear parabolic systems with input delay. IEEE Trans. Autom. Control 63(9), 3105–3111 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sano, H., Morimoto, S.: Predictors for linear parabolic systems with input delay. Jpn. J. Indust. Appl. Math. 35(2), 477–496 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tanabe, H.: Equations of Evolution. Iwanami, Tokyo (1975), (in Japanese)

  22. Villegas, J.A., Zwart, H., Le Gorrec, Y., Maschke, B.: Exponential stability of a class of boundary control systems. IEEE Trans. Autom. Control 54(1), 142–147 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu, X., Dubljevic, S.: Output regulation for a class of linear boundary controlled first-order hyperbolic PIDE systems. Automatica 85, 43–52 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zwart, H., Le Gorrec, Y., Maschke, B., Villegas, J.: Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control. Optim. Calc. Var. 16, 1077–1093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by KAKENHI (Grant-in-Aid for Scientific Research (C) No. 15K04999, (S) No. 15H05729), Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Sano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Well-posedness of (6), (7)

Set \(k(x,y)=e^{\int _y^x \gamma (\xi )d\xi }\overline{k}(x,y)\). Then, \(\overline{k}\) satisfies

$$\begin{aligned}&\overline{k}_x(x,y)+\overline{k}_y(x,y)=\int _y^x \overline{k}(x,z)\overline{h}(z,y)-\overline{h}(x,y), \end{aligned}$$
(89)
$$\begin{aligned}&\overline{k}(x,0)=\int _0^x \overline{k}(x,y)\overline{g}(y)dy-\overline{g}(x), \end{aligned}$$
(90)

where \(\overline{h}(x,y):=e^{-\int _y^x \gamma (\xi )d\xi }h(x,y)\), \(\overline{g}(x):=e^{-\int _0^x \gamma (\xi )d\xi }g(x)\). Therefore, it follows from [11, Theorem 1] that (89), (90), i.e. (6), (7) is well-posed.

Existence of the solution of (16)

Let \(Q=\{(x,y)\in \mathbf{R}^2 ; 0\le y\le x\le L\}\). We consider the following integral equation instead of (16):

$$\begin{aligned} \int _0^x k(x,y)\varphi (y)dy+1=\varphi (x), \quad x\in [0,L], \end{aligned}$$
(91)

where \(k\in C^1(Q)\) is a unique solution to (6), (7). By using the method of successive approximations, we see that (91) has a unique solution \(\varphi \in C^1[0,L]\) with bound \(|\varphi (x)|\le e^{Mx}\), where \(M:=\max _{(x,y)\in Q}|k(x,y)|\). It is clear that the \(\varphi \) gives the solution to (16).

Left invertibility of backstepping transformation

In Sect. 3, we introduced the target system (12) and the integral transformation (13). We rewrite them equivalently as follows:

\(\bullet \) Target system

$$\begin{aligned} \left\{ \begin{array}{l} \varphi _t(t,x)=\varphi _x(t,x)-\gamma (x)\varphi (t,x)+g(x)\varphi (t,0) \\ \quad \quad \quad \quad \quad {+\int _0^x h(x,y)\varphi (t,y)dy, \quad (t,x)\in (0,\infty )\times (0,L),} \\ \displaystyle {\varphi (t,L)=\int _0^L k(L,y)\varphi (t,y)dy+w(t,0), \quad t>0,} \\ \varphi (0,x)=u_0(x), \quad x\in [0,L], \\ w_t(t,x)=w_x(t,x), \quad (t,x)\in (0,\infty )\times (0,\tau ), \\ w(t,\tau )=0, \quad t>0, \\ w(0,x)=w_0(x), \quad x\in [0,\tau ]. \end{array}\right. \end{aligned}$$
(92)

\(\bullet \) Integral transformation

$$\begin{aligned} \left\{ \begin{array}{l} \varphi (t,x)=u(t,x), \\ w(t,x)=\mathcal{P}v(t,x)+\mathcal{Q}u(t,x), \end{array}\right. \end{aligned}$$
(93)

where

$$\begin{aligned} \mathcal{P}v(t,x):=v(t,x)-\int _0^x q(x,y)v(t,y)dy, \quad \mathcal{Q}u(t,x):=-\int _0^L \beta (x,y)u(t,y)dy. \end{aligned}$$

Similarly, the inverse integral transformation (65) is rewritten as

\(\bullet \) Inverse integral transformation

$$\begin{aligned} \left\{ \begin{array}{l} u(t,x)=\varphi (t,x), \\ v(t,x)=\mathcal{R}w(t,x)+\mathcal{S}\varphi (t,x), \end{array}\right. \end{aligned}$$
(94)

where

$$\begin{aligned} \mathcal{R}w(t,x):=w(t,x)+\int _0^x p(x,y)w(t,y)dy, \quad \mathcal{S}\varphi (t,x):=\int _0^L \alpha (x,y)\varphi (t,y)dy. \end{aligned}$$

Now, let us express the two transformations (93) and (94) as

$$\begin{aligned}&\left[ \begin{array}{c} \varphi (t,x) \\ w(t,x) \end{array}\right] =\mathcal{T}_\mathcal{P,Q}\left[ \begin{array}{c} u(t,x) \\ v(t,x) \end{array}\right] , \quad \mathcal{T}_\mathcal{P,Q}:=\left[ \begin{array}{cc} I &{} 0 \\ \mathcal{Q} &{} \mathcal{P} \end{array}\right] , \end{aligned}$$
(95)
$$\begin{aligned}&\left[ \begin{array}{c} u(t,x) \\ v(t,x) \end{array}\right] =\mathcal{T}_\mathcal{R,S}\left[ \begin{array}{c} \varphi (t,x) \\ w(t,x) \end{array}\right] , \quad \mathcal{T}_\mathcal{R,S}:=\left[ \begin{array}{cc} I &{} 0 \\ \mathcal{S} &{} \mathcal{R} \end{array}\right] . \end{aligned}$$
(96)

First, we calculate \(\mathcal{T}_\mathcal{R,S}\mathcal{T}_\mathcal{P,Q}\) as follows:

$$\begin{aligned} \mathcal{T}_\mathcal{R,S}\mathcal{T}_\mathcal{P,Q} =\left[ \begin{array}{cc} I &{} 0 \\ \mathcal{S+RQ} &{} \mathcal{RP} \end{array}\right] , \end{aligned}$$
(97)

where

$$\begin{aligned} (\mathcal{S+RQ})u(t,x)= & {} \int _0^L \biggl \{\alpha (x,y)-\beta (x,y)-\int _0^x p(x,z)\beta (z,y)dz\biggr \}u(t,y)dy, \\ (\mathcal{RP})v(t,x)= & {} v(t,x)+\int _0^x \biggl \{p(x,y)-q(x,y)-\int _y^xp(x,z)q(z,y)dz\biggr \}v(t,y)dy. \end{aligned}$$

From this expression, if the kernels p, q, \(\alpha \), and \(\beta \) satisfy the equations

$$\begin{aligned}&\alpha (x,y)-\beta (x,y)=\int _0^x p(x,z)\beta (z,y)dz, \end{aligned}$$
(98)
$$\begin{aligned}&p(x,y)-q(x,y)=\int _y^x p(x,z)q(z,y)dz, \end{aligned}$$
(99)

it follows that

$$\begin{aligned} \mathcal{T}_\mathcal{R,S}\mathcal{T}_\mathcal{P,Q} =\left[ \begin{array}{cc} I &{} 0 \\ 0 &{} I \end{array}\right] . \end{aligned}$$
(100)

Indeed, we can verify that the kernels p, q, \(\alpha \), and \(\beta \) derived in Sect. 3 (see (60), (63), (78), and (81)) satisfy the above (98) and (99). It is done as follows: Introducing the variable \(\varepsilon (x,y):=\alpha (x,y)-\beta (x,y)\), it follows from (23)–(25) and (66)–(68) that

$$\begin{aligned} \varepsilon _x(x,y)= & {} -\varepsilon _y(x,y)-\gamma (y)\varepsilon (x,y)+k(L,y)\alpha (x,L) \nonumber \\&+\int _y^L \varepsilon (x,z)h(z,y)dz, \end{aligned}$$
(101)
$$\begin{aligned} \varepsilon (x,0)= & {} \int _0^L \varepsilon (x,y)g(y)dy, \end{aligned}$$
(102)
$$\begin{aligned} \varepsilon (0,y)= & {} 0. \end{aligned}$$
(103)

By using the operators A and H defined by (28), (29), we can formulate (101)–(103) as

$$\begin{aligned} \varepsilon '(x,\cdot )=(A+H)\varepsilon (x,\cdot )+k(L,\cdot )\alpha (x,L), \quad \varepsilon (0,\cdot )=0, \end{aligned}$$
(104)

from which we have the solution

$$\begin{aligned} \varepsilon (x,\cdot )=\int _0^x T_{A+H}(x-z)k(L,\cdot )\alpha (z,L)dz. \end{aligned}$$
(105)

The solution (105) is expressed as

$$\begin{aligned} \varepsilon (x,y)= & {} \int _0^x (T_{A+H}(x-z)k(L,\cdot ))(y)\alpha (z,L)dz \nonumber \\= & {} \int _0^x \beta (x-z,y)\alpha (z,L)dz \nonumber \\= & {} \int _0^x \beta (z,y)\alpha (x-z,L)dz \nonumber \\= & {} \int _0^x \beta (z,y)T_{B+H}(x-z)k(L,\cdot )(L)dz \nonumber \\= & {} \int _0^x p(x,z)\beta (z,y)dz. \end{aligned}$$
(106)

This means that p, \(\alpha \), and \(\beta \) of Sect. 3 actually satisfy (98).

Next, introducing the variable \(r(x,y):=p(x,y)-q(x,y)\), from (26), (27) and (69), (70), we have

$$\begin{aligned}&r_x(x,y)+r_y(x,y)=0, \end{aligned}$$
(107)
$$\begin{aligned}&r(x,0)=\varepsilon (x,L). \end{aligned}$$
(108)

It is easy to see that eqs. (107), (108) has the solution

$$\begin{aligned} r(x,y)=\varepsilon (x-y,L), \end{aligned}$$
(109)

which leads to

$$\begin{aligned} r(x,y)= & {} \int _0^{x-y} (T_{A+H}(x-y-z)k(L,\cdot ))(L)\alpha (z,L)dz \nonumber \\= & {} \int _0^{x-y} (T_{A+H}(x-y-z)k(L,\cdot ))(L)(T_{B+H}(z)k(L,\cdot ))(L)dz \nonumber \\= & {} \int _0^{x-y} q(x-z,y)p(x,x-z)dz \nonumber \\= & {} \int _y^x p(x,z)q(z,y)dz. \end{aligned}$$
(110)

Therefore, we see that p and q of Sect. 3 also satisfy (99). In this way, the two transformations (95) and (96) with the kernels (60), (63), (78), and (81) satisfy (100). However, as for \(\mathcal{T}_\mathcal{P,Q}\mathcal{T}_\mathcal{R,S} =\left[ \begin{array}{cc} I &{} 0 \\ \mathcal{Q+PS} &{} \mathcal{PR} \end{array}\right] \), we can verify that they do not satisfy the relation

$$\begin{aligned} \mathcal{T}_\mathcal{P,Q}\mathcal{T}_\mathcal{R,S} =\left[ \begin{array}{cc} I &{} 0 \\ 0 &{} I \end{array}\right] , \end{aligned}$$
(111)

through a discussion similar to the above. In fact, \(\mathcal{PR}=I\) is satisfied, but \(\mathcal{Q+PS}=0\) is not. Hence, the backstepping transformation (95) with the kernels (60) and (63) is left invertible, but not right invertible.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sano, H., Wakaiki, M. Boundary stabilization of first-order hyperbolic equations with input delay. Japan J. Indust. Appl. Math. 36, 325–355 (2019). https://doi.org/10.1007/s13160-019-00346-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-019-00346-6

Keywords

Mathematics Subject Classification

Navigation