Skip to main content
Log in

Rigorous numerical computations for 1D advection equations with variable coefficients

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper provides a methodology of verified computing for solutions to 1D advection equations with variable coefficients. The advection equation is typical partial differential equations (PDEs) of hyperbolic type. There are few results of verified numerical computations to initial-boundary value problems of hyperbolic PDEs. Our methodology is based on the spectral method and semigroup theory. The provided method in this paper is regarded as an efficient application of semigroup theory in a sequence space associated with the Fourier series of unknown functions. This is a foundational approach of verified numerical computations for hyperbolic PDEs. Numerical examples show that the rigorous error estimate showing the well-posedness of the exact solution is given with high accuracy and high speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The definition of \(C_0\) semigroup is given in Sect. 2.

  2. From the Hahn-Banach theorem (cf., e.g., [2]), it follows that \(F(x)\not =\emptyset \) for any \(x\in X\).

  3. The “\(*\)” denotes the discrete convolution (Cauchy product) defined by \(a*b=\left( \sum _{m\in \mathbb {Z}}a_{k-m}b_m\right) _{k\in \mathbb {Z}}\) for two bi-infinite sequences a and b.

  4. The variable coefficient c(x) is the real-valued function.

References

  1. Boyd, J.: Chebyshev and Fourier Spectral Methods. Dover Books on Mathematics, 2nd edn. Dover Publications, Dover (2013)

    Google Scholar 

  2. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2010)

    Book  Google Scholar 

  3. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications, New York (2014)

    Google Scholar 

  4. Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society, New York (1998)

    MATH  Google Scholar 

  5. Figueras, J.-L., Gameiro, M., Lessard, J.-P., de la Llave, R.: A framework for the numerical computation and a posteriori verification of invariant objects of evolution equations. SIAM J. Appl. Dyn. Syst. 16(2), 1070–1088 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hesthaven, J.S.: Numerical Methods for Conservation Laws. Society for Industrial and Applied Mathematics, Philadelphia, PA (2017)

  7. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge Cambridge Monographs on Applied and Computational Mathematics. University Press, Cambridge (2007)

  8. Hille, E.: Functional Analysis and Semi-groups. Number 31 in American Mathematical Society: Colloquium publications. American Mathematical Society, New York(1948)

  9. Hungria, A., Lessard, J.-P., James, J.D.M.: Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach. Math. Comput. 85, 1427–1459 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ito, K., Kappel, F.: Evolution Equations and Approximations. Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing Company, Singapore (2002)

  11. Lessard, J.-P., James, J.D.M.: Computer assisted fourier analysis in sequence spaces of varying regularity. SIAM J. Math. Anal. 49(1), 530–561 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lumer, G., Phillips, R.S.: Dissipative operators in a Banach space. Pac. J. Math. 11(2), 679–698 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mason, J., Handscomb, D.: Chebyshev Polynomials. Chapman and Hall/CRC, Boca Raton (2002)

    Book  MATH  Google Scholar 

  14. Minamoto, T.: Numerical verification of solutions for nonlinear hyperbolic equations. Appl. Math. Lett. 10(6), 91–96 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Minamoto, T.: Numerical existence and uniqueness proof for solutions of nonlinear hyperbolic equations. J. Comput. Appl. Math. 135(1), 79–90 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Minamoto, T.: Numerical verification method for solutions of nonlinear hyperbolic equations. In: Alefeld, G., Rohn, J., Rump, S., Yamamoto, T. (eds.) Symbolic algebraic methods and verification methods, pp. 173–181. Springer, Vienna (2001)

    Chapter  Google Scholar 

  17. Mizuguchi, M., Takayasu, A., Kubo, T., Oishi, S.: A method of verified computations for solutions to semilinear parabolic equations using semigroup theory. SIAM J. Numer. Anal. 55(2), 980–1001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mizuguchi, M., Takayasu, A., Kubo, T., Oishi, S.: Numerical verification for existence of a global-in-time solution to semilinear parabolic equations. J. Comput. Appl. Math. 315, 1–16 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nakao, M.T.: A numerical approach to the proof of existence of solutions for elliptic problems. Jpn J. Appl. Math. 5(2), 313 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nakao, M.T.: Numerical verifications of solutions for nonlinear hyperbolic equations. Interval Comput. 4(4), 64–77 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Nakao, M.T.: On verified computations of solutions for nonlinear parabolic problems. Nonlinear Theory Appl. IEICE 5(3), 320–338 (2014)

    Article  Google Scholar 

  22. Nakao, M.T., Watanabe, Y.: Numerical verification methods for solutions of semilinear elliptic boundary value problems. Nonlinear Theory Appl. IEICE 2(1), 2–31 (2011)

    Article  Google Scholar 

  23. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  24. Plum, M.: Computer-assisted existence proofs for two-point boundary value problems. Computing 46(1), 19–34 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Plum, M.: Existence and multiplicity proofs for semilinear elliptic boundary value problems by computer assistance. Jahresber. Deutsch. Math.-Verein. 110, 19–54 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Rump, S.M.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  27. Takayasu, A., Liu, X., Oishi, S.: Verified computations to semilinear elliptic boundary value problems on arbitrary polygonal domains. Nonlinear Theory Appl. IEICE 4(1), 34–61 (2013)

    Article  Google Scholar 

  28. Takayasu, A., Mizuguchi, M., Kubo, T., Oishi, S.: Accurate method of verified computing for solutions of semilinear heat equations. Reliable Comput. 25, 74–99 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Takayasu, A., Yoon, S., Endo, Y.: Codes of “Rigorous numerical computations for 1D advection equations with variable coefficients” (2018). http://www.risk.tsukuba.ac.jp/~takitoshi/codes/Rc1Daevc2.zip

  30. Trefethen, L.N.: Spectral methods in MATLAB. Society for Industrial and Applied Mathematics, Philadelphia (2000)

  31. Yagi, A.: Abstract Parabolic Evolution Equations and Their Applications. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  32. Yamamoto, N.: A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem. SIAM J. Numer. Anal. 35(5), 2004–2013 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yosida, K.: On the differentiability and the representation of one-parameter semi-group of linear operators. J. Math. Soc. Jpn. 1(1), 15–21 (1948). 09

    Article  MathSciNet  MATH  Google Scholar 

  34. Zgliczynski, P., Mischaikow, K.: Rigorous numerics for partial differential equations: the Kuramoto–Sivashinsky equation. Found. Comput. Math. 1(3), 255–288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to Dr. M. Sobajima in Tyokyo University of Science for his essential suggestion on generating the \(C_0\) semigroup on sequence spaces. The authors would also like to express their gratitude to the anonymous referees for providing valuable comments that improve the paper. This work was partially supported by JSPS Grant-in-Aid for Early-Career Scientists, No. 18K13453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akitoshi Takayasu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takayasu, A., Yoon, S. & Endo, Y. Rigorous numerical computations for 1D advection equations with variable coefficients. Japan J. Indust. Appl. Math. 36, 357–384 (2019). https://doi.org/10.1007/s13160-019-00345-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-019-00345-7

Keywords

Mathematics Subject Classification

Navigation