Skip to main content
Log in

A generalized predator–prey system with multiple discrete delays and habitat complexity

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A generalized predator–prey model with multiple discrete delays and the effect of habitat complexity is proposed in this paper. Firstly, the stability of the considered model system and existence of Hopf bifurcations are investigated by the differential equation theory. Secondly, the direction of Hopf bifurcations and the stability of bifurcating periodic solutions are determined by applying the normal form theory and the center manifold reduction for functional differential equations. Most importantly and interestingly, this paper gives a class of the corresponding model systems, and some published works become special cases of ours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ma, Z., Wang, S., Wang, T., Tang, H., Li, Z.: A generalized predator-prey system with habitat complexity. J. Biol. Syst. 25, 495–520 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. August, P.V.: The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology 64, 1495–1507 (1983)

    Article  Google Scholar 

  3. Auger, P., Charles, S., Viala, M., Poggiale, J.C.: Aggregation and emergence in ecological modelling: interaction of ecological levels. Ecol. Model. 127, 11–20 (2000)

    Article  Google Scholar 

  4. Jana, D., Bairagi, N.: Habitat complexity, dispersal and metapopulations: macroscopic study of a predator-prey system. Ecol. Complex. 17, 131–139 (2014)

    Article  Google Scholar 

  5. Bairagi, N., Jana, D.: Age-structured predator-prey model with habitat complexity: oscillations and control. Dyn. Syst. 27, 475–499 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bell, S.S.: Habitat complexity of polychaete tube caps: influence of architecture on dynamics of a meioepibenthic assemblage. J. Mar. Res. 43, 647–657 (1985)

    Article  Google Scholar 

  7. Canion, C.R., Heck, K.L.: Effect of habitat complexity on predation success: re-evaluating the current paradigm in seagrass beds. Mar. Ecol. Prog. Ser. 393, 37–46 (2009)

    Article  Google Scholar 

  8. Bell, S., McCoy, E., Mushinsky, H.: Habitat structure: the physical arrangement of objects in space. Chapman and Hall, London (1991)

    Book  Google Scholar 

  9. Ellner, S.P.: Habitat structure and population persistence in an experimental community. Nature 412, 538–543 (2001)

    Article  Google Scholar 

  10. Ylikarjula, J., Alaja, S., Laakso, J., Tesar, D.: Effects of patch number and dispersal patterns on population dynamics and synchrony. J. Theor. Biol. 207, 377–387 (2000)

    Article  Google Scholar 

  11. Deka, B.D., Patra, A., Tushar, J., Dubey, B.: Stability and Hopf-bifurcation in a general Gauss type two-prey and one-predator system. Appl. Math. Model. 40, 5793–5818 (2016)

    Article  MathSciNet  Google Scholar 

  12. Kar, T.K., Jana, S.: Stability and bifurcation analysis of a stage structured predator prey model with time delay. Appl. Math. Comput. 219, 3779–3792 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Chen, Y., Song, C.: Stability and Hopf bifurcation analysis in a prey-predator system with stage-structure for prey and time delay. Chaos Solitons Fractals 38, 1104–1114 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gan, Q., Xu, R., Yang, P.: Bifurcation and chaos in a ratio-dependent predator-prey system with time delay. Chaos Solitons Fractals 39, 1883–1895 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu, G.P., Li, W.T., Yan, X.P.: Hopf bifurcations in a predator-prey system with multiple delays. Chaos Solitons Fractals 42, 1273–1285 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Song, X., Li, Y.: Dynamic behaviors of the periodic predator-prey model with modified Leslie–Gower Holling-type II schemes and impulsive effect. Nonlinear Anal. RWA. 9, 64–79 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Song, Y., Wei, J.: Local Hopf bifurcation and global periodic solutions in a delayed predator–prey system. J. Math. Anal. Appl. 301, 1–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, Z.P., Li, W.T., Yan, X.P.: Stability and Hopf bifurcation for a three-species food chain model with time delay and spatial diffusion. Appl. Maht. Comput. 219, 2713–2731 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yan, X.P., Li, W.T.: Stability of bifurcating periodic solutions in a delayed reaction–diffusion population model. Nonlinearity 23, 1413–1431 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yan, X.P., Zhang, C.H.: Hopf bifurcation in a delayed Lokta–Volterra predator–prey system. Nonlinear Anal-RWA 9, 114–127 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie–Gower predator–prey model with Michaelis–Menten type prey harvesting. J. Math. Anal. Appl. 398, 278–295 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jia, Y., Xue, P.: Effects of the self- and cross-diffusion on positive steady states for a generalized predator–prey system. Nonlinear Anal. RWA. 32, 229–241 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kar, T.K., Pahari, U.K.: Modelling and analysis of a prey–predator system with stage-structure and harvesting. Nonlinear Anal. RWA. 8, 601–609 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, X., Wei, J.: Dynamics in a diffusive predator–prey system with strong Allee effect and Ivlev-type functional response. J. Math. Anal. Appl. 422, 1447–1462 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bairagi, N., Jana, D.: On the stability and Hopf bifurcation of a delay-induced predator–prey system with habitat complexity. Appl. Math. Model. 35, 3255–3267 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, T., Zhang, H.: Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system. Chaos Solitons Fractals 91, 92–107 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, H., Tian, Y.: Hopf bifurcation in REM algorithm with communication delay. Chaos Solitons Fractals 25, 1093–1105 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qu, Y., Wei, J.: Bifurcation analysis in a time-delay model for prey–predator growth with stage-structure. Nonlinear Dyn. 49, 285–294 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Celik, C.: The stability and Hopf bifurcation of a predator–prey system with time delay. Chaos Solitons Fractals 37, 87–99 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Celik, C.: Hopf bifurcation of a ratio-dependent predator–prey system with time delay. Chaos Solitons Fractals 42, 1474–1484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, C., Lin, Y., Han, M.: Stability and Hopf bifurcation for an epidemic disease model with delay. Chaos Solitons Fractals 30, 204–216 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Culshaw, R.V., Ruan, S.: A delay-differential equation model of HIV infection of CD4+ T-cells. Math. Biosci. 165, 27–39 (2000)

    Article  MATH  Google Scholar 

  33. Tripathia, J., Tyagia, S., Abbas, S.: Global analysis of a delayed density dependent predator-prey model with Crowley–Martin functional response. Commun. Nonlinear. Sci. Numer. Simul. 30, 45–69 (2016)

    Article  MathSciNet  Google Scholar 

  34. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and application of Hopf bifurcation. Cambridge University, Cambridge (1981)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 11301238) and the Fundamental Research Funds for the Central Universities (no. lzujbky-2017-166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Wang, S. A generalized predator–prey system with multiple discrete delays and habitat complexity. Japan J. Indust. Appl. Math. 36, 385–406 (2019). https://doi.org/10.1007/s13160-019-00343-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-019-00343-9

Keywords

Mathematics Subject Classification

Navigation