Skip to main content
Log in

The inf-sup condition and error estimates of the Nitsche method for evolutionary diffusion–advection-reaction equations

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The Nitsche method is a method of “weak imposition” of the inhomogeneous Dirichlet boundary conditions for partial differential equations. This paper explains stability and convergence study of the Nitsche method applied to evolutionary diffusion–advection-reaction equations. We mainly discuss a general space semidiscrete scheme including not only the standard finite element method but also Isogeometric Analysis. Our method of analysis is a variational one that is a popular method for studying elliptic problems. The variational method enables us to obtain the best approximation property directly. Actually, results show that the scheme satisfies the inf-sup condition and Galerkin orthogonality. Consequently, the optimal order error estimates in some appropriate norms are proven under some regularity assumptions on the exact solution. We also consider a fully discretized scheme using the backward Euler method. Numerical example demonstrate the validity of those theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bazilevs, Y., Hughes, T.J.R.: Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput. Fluids 36(1), 12–26 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bazilevs, Y., Beirão da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for $h$-refined meshes. Math. Models Methods Appl. Sci. 16(7), 1031–1090 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bazilevs, Y., Michler, C., Calo, V.M., Hughes, T.J.R.: Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput. Methods Appl. Mech. Eng. 196(49–52), 4853–4862 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beirão da Veiga, L., Buffa, A., Sangalli, G., Vázquez, R.: Mathematical analysis of variational isogeometric methods. Acta Numer. 23, 157–287 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  6. Burman, E.: A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions. SIAM J. Numer. Anal. 50(4), 1959–1981 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burman, E., Fernández, M.A.: Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence. Numer. Math. 107(1), 39–77 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burman, E., Fernández, M.A., Hansbo, P.: Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal. 44(3), 1248–1274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Choudury, G., Lasiecka, I.: Optimal convergence rates for semidiscrete approximations of parabolic problems with nonsmooth boundary data. Numer. Funct. Anal. Optim. 12(5–6), 469–485 (1992)

    MathSciNet  MATH  Google Scholar 

  10. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  11. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Springer, Berlin (1992). Evolution problems. I, With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon, Translated from the French by Alan Craig

  12. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Book  MATH  Google Scholar 

  13. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  14. Evans, J.A., Hughes, T.J.R.: Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements. Numer. Math. 123(2), 259–290 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Freund, J., Stenberg, R.: On weakly imposed boundary conditions for second order problems. In: Cecchi, M., et al. (eds.) Proceedings of the Ninth International Conference on Finite Elements in Fluids, pp. 327–336. Università di Padova, Padova (1995)

    Google Scholar 

  16. Heinrich, B., Jung, B.: Nitsche mortaring for parabolic initial-boundary value problems. Electron. Trans. Numer. Anal. 32, 190–209 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilr äumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36, 9–15 (1971). Collection of articles dedicated to Lothar Collatz on his sixtieth birthday

  18. Oden, J.T., Babuška, I., Baumann, C.E.: A discontinuous $hp$ finite element method for diffusion problems. J. Comput. Phys. 146(2), 491–519 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Saito, N.: Variational analysis of the discontinuous Galerkin time-stepping method for parabolic equations. arXiv:1710.10543

  20. Schumaker, L.L.: Spline Functions: Basic Theory. Cambridge Mathematical Library, 3rd edn. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  21. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  22. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987). Translated from the German by C. B. Thomas and M. J. Thomas

Download references

Acknowledgements

We thank the anonymous reviewer for his/her valuable comments and suggestions to improve the quality of the paper. This study was supported by JST CREST Grant Number JPMJCR15D1 and JSPS KAKENHI Grant Number 15H03635. The first author was also supported by the Program for Leading Graduate Schools, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Ueda.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueda, Y., Saito, N. The inf-sup condition and error estimates of the Nitsche method for evolutionary diffusion–advection-reaction equations. Japan J. Indust. Appl. Math. 36, 209–238 (2019). https://doi.org/10.1007/s13160-018-0338-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-018-0338-4

Keywords

Mathematics Subject Classification

Navigation