Skip to main content
Log in

On the equivalence of the norms of the discrete diffrential forms in discrete exterior calculus

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

For analysis of electromagnetic fields, differential forms are useful mathematical tools. Discrete exterior calculus (DEC) is a finite-difference-type framework of discretization of the discrete differential forms. Although several numerical estimations of errors of DEC have been reported, a tangible theoretical error bound is not established. One reason of this is that there are two norms that have been commonly used for the discrete differential forms. In this paper, we show that on any quasi-uniform mesh, the two norms of the discrete differential forms in DEC are equivalent, and moreover, the order of accuracy of the discrete differential forms are independent of the choice of the norm. As an application, it is shown that the accuracy of the discrete Hodge operator of DEC is of the second-order if any quasi-uniform Delaunay mesh is adopted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bell, N., Hirani, A.N.: PyDEC: Software and algorithms for discretization of exterior calculus. ACM Trans. Math. Softw. 39(1), 1–43 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bochev, P.B., Hyman, J.M.: Principles of mimetic discretizations of differential operators. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretizations, pp. 89–119. Springer, New York (2006)

    Chapter  Google Scholar 

  4. Bossavit, A.: Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc. A Phys. Sci. Measure. Instrum. Manage. Educ. Rev. 135(8), 493–500 (1988)

    Article  Google Scholar 

  5. Bossavit, A.: Computational Electromagnetism. Academic Press, Boston (1998)

    MATH  Google Scholar 

  6. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer-Verlag, New York (2008)

    Book  MATH  Google Scholar 

  7. Cheng, S.W., Dey, T.K., Shewchuk, J.R.: Delaunay Mesh Generation. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  8. Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete Exterior Calculus. Arxiv preprint arXiv:math0508341 (2005)

  9. Dodziuk, J.: Finite-difference approach to the Hodge theory of harmonic forms. Am. J. Math. 98(1), 79–104 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eisenberg, M.A., Malvern, L.E.: On finite element integration in natural co-ordinates. Int. J. Numer. Methods Eng. 7(4), 574–575 (1973)

    Article  MATH  Google Scholar 

  11. Gross, P.W., Kotiuga, P.R.: Data structures for geometric and topological aspects of finite element algorithms. Progr. Electromagn. Res. 32, 151–169 (2001)

    Article  Google Scholar 

  12. Hiptmair, R.: Discrete Hodge operators. Numerische Mathematik 90(2), 265–289 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hirani, A.: Discrete Exterior Calculus. Ph.D. thesis, California Institute of Technology (2003)

  15. Hirani, A.N., Kalyanaraman, K., Vanderzee, E.B.: Delaunay Hodge star. CAD Comput. Aided Design 45(2), 540–544 (2013)

    Article  MathSciNet  Google Scholar 

  16. Hirani, A.N., Nakshatrala, K.B., Chaudhry, J.H.: Numerical method for darcy flow derived using discrete exterior calculus. Int. J. Comput. Methods Eng. Sci. Mech. 16(3), 151–169 (2015)

    Article  MathSciNet  Google Scholar 

  17. Kobayashi, K.: A recursive formula for the circumradius of the n-simplex. Forum Geometricorum 16, 179–184 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Mohamed, M.S., Hirani, A.N., Samtaney, R.: Comparison of discrete Hodge star operators for surfaces. CAD Comput. Aided Design 78, 118–125 (2016)

    Article  Google Scholar 

  19. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley Publishing Company, Menlo Park (1984)

    MATH  Google Scholar 

  20. Nicolaides, R., Trapp, K.: Covolume discretization of differential forms. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretizations, pp. 161–171. Springer, New York (2006)

    Chapter  Google Scholar 

  21. Rylander, T., Bondeson, A., Ingelström, P.: Computational Electromagnetics. Springer Science & Business Media, New York (2005)

    MATH  Google Scholar 

  22. Waldron, S.: The error in linear interpolation at the vertices of a simplex. SIAM J. Numer. Anal. 35(3), 1191–1200 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by PRESTO, JST (JPMJPR16EC) and JSPS KAKENHI Grant Number JP26400200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satoh.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satoh, T., Yaguchi, T. On the equivalence of the norms of the discrete diffrential forms in discrete exterior calculus. Japan J. Indust. Appl. Math. 36, 3–24 (2019). https://doi.org/10.1007/s13160-018-0334-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-018-0334-8

Keywords

Mathematics Subject Classification

Navigation