Skip to main content
Log in

Periodic orbit analysis for the deterministic path-preference traffic flow cellular automaton

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The path-preference traffic flow cellular automaton is suggested to model the dynamics of transcription. The main difference from the simple traffic flow model is that it contains another preferential paths at some sites. In this paper, we propose an exact analysis for the simplest version of this model. We find that the density of particles is dominant to the dynamics of this cellular automaton and observed that there are not only expected phase shift but also several gaps as the density increases. By considering the behavior of periodic orbits, we also determine the point where such gaps in the flow appear and the exact value of the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

    MATH  Google Scholar 

  2. Belitsky, V., Ferrari, P.A.: Ballistic annihilation and deterministic surface growth. J. Stat. Phys. 80, 517 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Macdonald, C., Gibbs, J., Pipkin, A.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6, 1 (1968)

    Article  Google Scholar 

  4. Derrida, B.: An exactly soluble non-equilibrium system: the asymmetric simple exclusion process. Phys. Rep. 301, 65 (1998)

    Article  MathSciNet  Google Scholar 

  5. Tokihiro, T., Takahashi, D., Matsukidaira, J., Satsuma, J.: From soliton equations to integrable cellular automata through a limiting procedure. Phys. Rev. Lett. 76, 3247–3250 (1996)

    Article  Google Scholar 

  6. Schadschneider, A., Schreckenberg, M.: Cellular automation models and traffic flow. J. Phys. A: Math Gen. 26, L679 (1993)

  7. Ohta, Y., Nishiyama, A., et al.: Path-preference cellular-automaton model for traffic flow through transit points and its application to the transcription process in human cells. Phys. Rev. E 86, 021918 (2012)

    Article  Google Scholar 

  8. Cook, P.R.: Principles of Nuclear Structure and Function. Wiley-Liss, New York (2001)

    Google Scholar 

  9. Papantonis, A., Larkin, J.D., Wada, Y., Ohta, Y., Ihara, S., Kodama, T., Cook, P.R.: Active RNA polymerases: mobile or immobile molecular machines? PLoS Biol. 8, e1000419 (2010)

    Article  Google Scholar 

  10. Fraser, P., Bickmore, W.: Nuclear organization of the genome and the potential for gene regulation. Nature (London) 447, 413 (2007)

    Article  Google Scholar 

  11. Ohta, Y., Kodama, T., Ihara, S.: Cellular-automaton model of the cooperative dynamics of RNA polymerase II during transcription in human cells. Phys. Rev. E 84, 041922 (2011)

    Article  Google Scholar 

  12. Tripathi, T., Chowdhury, D.: Interacting RNA polymerase motors on a DNA track: Effects of traffic congestion and intrinsic noise on RNA synthesis. Phys. Rev. E 77, 011921 (2008)

    Article  Google Scholar 

  13. Tripathi, T., Schüz, G.M., Chowdhury, D.: RNA polymerase motors: dwell time distribution, velocity and dynamical phases. J. Stat. Mech: Theor. Exper. P08018 (2009)

  14. Brankov, J.G., Pesheva, N.C., Bunzarova, N.Zh.: arXiv:0803.2625

  15. Negami, H.: Private communication

  16. Tannai, T., Nishinari, K.: Propagation of Congestion in TASEP Network. J. Cell. Autom. 11, 363–375 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Professors Tetsuji Tokihiro and Youichiro Wada for helpful comments. This research is supported by Platform for Dynamic Approaches to Living System (the Platform Project for Supporting in Drug Discovery and Life Science Research) from the Ministry of Education, Culture, Sports, Science (MEXT) and Technology, Japan, and Japan Agency for Medical Research and Development (AMED). This work is also partially supported by the JPSJ KAKENHI Grant Number 17K14199.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Nakata.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakata, Y., Ohta, Y. & Ihara, S. Periodic orbit analysis for the deterministic path-preference traffic flow cellular automaton. Japan J. Indust. Appl. Math. 36, 25–51 (2019). https://doi.org/10.1007/s13160-018-0328-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-018-0328-6

Keywords

Mathematics Subject Classification

Navigation