Japan Journal of Industrial and Applied Mathematics

, Volume 35, Issue 3, pp 1283–1302 | Cite as

Existence of mass conserving solution for the coagulation–fragmentation equation with singular kernel

  • Debdulal GhoshEmail author
  • Jitendra Kumar
Original Paper Area 1


In this article, we investigate the existence of a solution to the initial value problem associated to a singular coagulation–fragmentation equation. We analyze the problem with singular coagulation kernel and multiple fragmentation kernel. It is also shown that the solution satisfies the mass conservation law.


coagulation–fragmentation equation Singular coagulation kernel Multiple fragmentation kernel Existence of solution Mass conservation 

Mathematics Subject Classification

35A01 34A12 



The authors are truly thankful to the anonymous reviewers for providing insightful comments that improved the readability of the article.


  1. 1.
    Drake, R.L.: A general mathematical survey of the coagulation equation. Top. Curr. Aerosol Res. Part 2 3, 201–376 (1972)Google Scholar
  2. 2.
    Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, ocks, and herds. Adv. Biophys. 22, 1–94 (1986)CrossRefGoogle Scholar
  3. 3.
    Perelson, A.S., Samsel, R.W.: Kinetics of red blood cell aggregation: an example of geometric polymerization. In: Kinetics of Aggregation and Gelation, pp. 137–144 (1984)CrossRefGoogle Scholar
  4. 4.
    Safronov, V.S.: Evolution of the protoplanetary cloud and formation of the earth and planets, by Safronov, V. S., Translated from Russian Jerusalem (Israel): Israel Program for Scientific Translations, Keter Publishing House, 212 p. 1, (1972)Google Scholar
  5. 5.
    Smoluchowski, M.: Drei vortrage uber diffusion. Brownsche bewegung und koagulation von kolloidteilchen. Z. Phys. 17, 557–585 (1916)Google Scholar
  6. 6.
    Smoluchowski, M.: Grundriß der Koagulationskinetik kolloider Lösungen. Colloid Polym. Sci. 21(3), 98–104 (1917)Google Scholar
  7. 7.
    Gokhale, Y.P., Kumar, R., Kumar, J., Hintz, W., Warnecke, G., Tomas, J.: Disintegration process of surface stabilized sol–gel TiO2 nanoparticles by population balances. Chem. Eng. Sci. 64(24), 5302–5307 (2009)CrossRefGoogle Scholar
  8. 8.
    Randolph, A.D.: Effect of crystal breakage on crystal size distribution in mixed suspension crystallizer. Ind. Eng. Chem. Fundam. 8(1), 58–63 (1969)CrossRefGoogle Scholar
  9. 9.
    McLeod, J.B.: On an infinite set of non-linear differential equations. Q. J. Math. 13(1), 119–128 (1962)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Melzak, Z.A.: A scalar transport equation. Trans. Am. Math. Soc. 85(2), 547–560 (1957)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ball, J.M., Carr, J.: The discrete coagulation–fragmentation equations: existence, uniqueness, and density conservation. J. Stat. Phys. 61(1), 203–234 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Laurençot, P., Mischler, S.: From the discrete to the continuous coagulation–fragmentation equations. Proc. R. Soc. Edinb. Sect. A Math. 132(5), 1219–1248 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Norris, J.R.: Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Prob. 9, 78–109 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Laurençot, P.: On a class of continuous coagulation–fragmentation equations. J. Differ. Equ. 167(2), 245–274 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Escobedo, M., Laurençot, P., Mischler, S., Perthame, B.: Gelation and mass conservation in coagulation–fragmentation models. J. Differ. Equ. 195(1), 143–174 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Banasiak, J.: On a non-uniqueness in fragmentation models. Math. Methods. Appl. Sci. 25(7), 541–556 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Giri, A.K., Kumar, J., Warnecke, G.: The continuous coagulation equation with multiple fragmentation. J. Math. Anal. Appl. 374(1), 71–87 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Banasiak, J., Lamb, W.: Global strict solutions to continuous coagulation–fragmentation equations with strong fragmentation. Proc. R. Soc. Edinb. Sect. A Math. 141(3), 465–480 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Dubovskiǐ, P.B., Stewart, I.W.: Existence, uniqueness and mass conservation for the coagulation–fragmentation equation. Math. Methods Appl. Sci. 19(7), 571–591 (1996)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Camejo, C.C.: The singular coagulation and coagulation–fragmentation equations, PhD Thesis, (2013)Google Scholar
  21. 21.
    Saha, J., Kumar, J.: The singular coagulation equation with multiple fragmentation. Z. Angew. Math. Phys. 66(3), 919–941 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations