Skip to main content
Log in

Existence of mass conserving solution for the coagulation–fragmentation equation with singular kernel

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this article, we investigate the existence of a solution to the initial value problem associated to a singular coagulation–fragmentation equation. We analyze the problem with singular coagulation kernel and multiple fragmentation kernel. It is also shown that the solution satisfies the mass conservation law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drake, R.L.: A general mathematical survey of the coagulation equation. Top. Curr. Aerosol Res. Part 2 3, 201–376 (1972)

    Google Scholar 

  2. Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, ocks, and herds. Adv. Biophys. 22, 1–94 (1986)

    Article  Google Scholar 

  3. Perelson, A.S., Samsel, R.W.: Kinetics of red blood cell aggregation: an example of geometric polymerization. In: Kinetics of Aggregation and Gelation, pp. 137–144 (1984)

    Chapter  Google Scholar 

  4. Safronov, V.S.: Evolution of the protoplanetary cloud and formation of the earth and planets, by Safronov, V. S., Translated from Russian Jerusalem (Israel): Israel Program for Scientific Translations, Keter Publishing House, 212 p. 1, (1972)

  5. Smoluchowski, M.: Drei vortrage uber diffusion. Brownsche bewegung und koagulation von kolloidteilchen. Z. Phys. 17, 557–585 (1916)

    Google Scholar 

  6. Smoluchowski, M.: Grundriß der Koagulationskinetik kolloider Lösungen. Colloid Polym. Sci. 21(3), 98–104 (1917)

    Google Scholar 

  7. Gokhale, Y.P., Kumar, R., Kumar, J., Hintz, W., Warnecke, G., Tomas, J.: Disintegration process of surface stabilized sol–gel TiO2 nanoparticles by population balances. Chem. Eng. Sci. 64(24), 5302–5307 (2009)

    Article  Google Scholar 

  8. Randolph, A.D.: Effect of crystal breakage on crystal size distribution in mixed suspension crystallizer. Ind. Eng. Chem. Fundam. 8(1), 58–63 (1969)

    Article  Google Scholar 

  9. McLeod, J.B.: On an infinite set of non-linear differential equations. Q. J. Math. 13(1), 119–128 (1962)

    Article  MathSciNet  Google Scholar 

  10. Melzak, Z.A.: A scalar transport equation. Trans. Am. Math. Soc. 85(2), 547–560 (1957)

    Article  MathSciNet  Google Scholar 

  11. Ball, J.M., Carr, J.: The discrete coagulation–fragmentation equations: existence, uniqueness, and density conservation. J. Stat. Phys. 61(1), 203–234 (1990)

    Article  MathSciNet  Google Scholar 

  12. Laurençot, P., Mischler, S.: From the discrete to the continuous coagulation–fragmentation equations. Proc. R. Soc. Edinb. Sect. A Math. 132(5), 1219–1248 (2002)

    Article  MathSciNet  Google Scholar 

  13. Norris, J.R.: Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Prob. 9, 78–109 (1999)

    Article  MathSciNet  Google Scholar 

  14. Laurençot, P.: On a class of continuous coagulation–fragmentation equations. J. Differ. Equ. 167(2), 245–274 (2000)

    Article  MathSciNet  Google Scholar 

  15. Escobedo, M., Laurençot, P., Mischler, S., Perthame, B.: Gelation and mass conservation in coagulation–fragmentation models. J. Differ. Equ. 195(1), 143–174 (2003)

    Article  MathSciNet  Google Scholar 

  16. Banasiak, J.: On a non-uniqueness in fragmentation models. Math. Methods. Appl. Sci. 25(7), 541–556 (2002)

    Article  MathSciNet  Google Scholar 

  17. Giri, A.K., Kumar, J., Warnecke, G.: The continuous coagulation equation with multiple fragmentation. J. Math. Anal. Appl. 374(1), 71–87 (2011)

    Article  MathSciNet  Google Scholar 

  18. Banasiak, J., Lamb, W.: Global strict solutions to continuous coagulation–fragmentation equations with strong fragmentation. Proc. R. Soc. Edinb. Sect. A Math. 141(3), 465–480 (2011)

    Article  MathSciNet  Google Scholar 

  19. Dubovskiǐ, P.B., Stewart, I.W.: Existence, uniqueness and mass conservation for the coagulation–fragmentation equation. Math. Methods Appl. Sci. 19(7), 571–591 (1996)

    Article  MathSciNet  Google Scholar 

  20. Camejo, C.C.: The singular coagulation and coagulation–fragmentation equations, PhD Thesis, (2013)

  21. Saha, J., Kumar, J.: The singular coagulation equation with multiple fragmentation. Z. Angew. Math. Phys. 66(3), 919–941 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are truly thankful to the anonymous reviewers for providing insightful comments that improved the readability of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debdulal Ghosh.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D., Kumar, J. Existence of mass conserving solution for the coagulation–fragmentation equation with singular kernel. Japan J. Indust. Appl. Math. 35, 1283–1302 (2018). https://doi.org/10.1007/s13160-018-0327-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-018-0327-7

Keywords

Mathematics Subject Classification

Navigation