Japan Journal of Industrial and Applied Mathematics

, Volume 35, Issue 3, pp 1191–1211 | Cite as

Error analysis of Crouzeix–Raviart and Raviart–Thomas finite element methods

  • Kenta Kobayashi
  • Takuya TsuchiyaEmail author
Original Paper Area 2


We discuss the error analysis of the lowest degree Crouzeix–Raviart and Raviart–Thomas finite element methods applied to a two-dimensional Poisson equation. To obtain error estimations, we use the techniques developed by Babuška–Aziz and the authors. We present error estimates in terms of the circumradius and diameter of triangles in which the constants are independent of the geometric properties of the triangulations. Numerical experiments confirm the results obtained.


Crouzeix–Raviart Raviart–Thomas Finite element method Error estimation Triangulation Circumradius 

Mathematics Subject Classification

65D05 65N30 



The authors were supported by JSPS KAKENHI Grant Numbers JP26400201, JP16H03950, and JP17K18738. The authors thank the anonymous referee for the valuable comments that helped to improve this paper.


  1. 1.
    Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modélisation mathématique et analyse numérique 19, 7–32 (1985)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Babuška, I., Aziz, A.K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13, 214–226 (1976)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, New York (2013)CrossRefGoogle Scholar
  4. 4.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)CrossRefGoogle Scholar
  5. 5.
    Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Springer, New York (2004)CrossRefGoogle Scholar
  6. 6.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Pitman, 1985, reprinted by SIAM (2011)Google Scholar
  7. 7.
    Kikuchi, F.: Mathematics of the Finite Element Methods, (in Japanese) Baifu-kan (1996)Google Scholar
  8. 8.
    Kikuchi, F., Saito, N.: Principle of Numerical Analysis (in Japanese), Iwanami-Shoten (2016)Google Scholar
  9. 9.
    Kobayashi, K., Tsuchiya, T.: A Babuška-Aziz type proof of the circumradius condition. Jpn. J. Ind. Appl. Math. 31, 193–210 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kobayashi, K., Tsuchiya, T.: A prioir error estimates for Lagrange interpolation on triangles. Appl. Math. 60, 485–499 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kobayashi, K., Tsuchiya, T.: Extending Babuška-Aziz theorem to higher-order Lagrange interpolation. Appl. Math. 61, 121–133 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kobayashi, K., Tsuchiya, T.: Approximating surface area by interpolations on triangulations. Jpn. J. Ind. Appl. Math. 34, 509–530 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Liu, X., Kikuchi, F.: Estimation of error constants appearing in non-conforming linear triangular finite element, Proceedings of APCOM’07-EPMESC XI (2007)Google Scholar
  14. 14.
    Liu, X., Kikuchi, F.: Determination of the Babuska-Aziz constant for the linear triangular element. Jpn. J. Ind. Appl. Math. 23, 75–82 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mao, S., Shi, Z.: Explicit error estimates for mixed and nonconforming finite elements. J. Comput. Math. 27, 425–440 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Marini, L.D.: An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22, 493–496 (1985)MathSciNetCrossRefGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Commerce and ManagementHitotsubashi UniversityKunitachiJapan
  2. 2.Graduate School of Science and EngineeringEhime UniversityMatsuyamaJapan

Personalised recommendations