Japan Journal of Industrial and Applied Mathematics

, Volume 35, Issue 3, pp 1153–1161 | Cite as

An equivalent form for the \(\exp (-\phi (\xi ))\)-expansion method

  • Hong-Zhun LiuEmail author
Original Paper Area 1


Recently, the \(\exp (-\phi (\xi ))\)-expansion method has attracted many authors’ interest. In this article, by making use of a certain Riccati equation, we obtain its equivalent form. Compared with the original \(\exp (-\phi (\xi ))\)-expansion method, the equivalent form is simpler, more direct and facile for application. The nonlinear Gerdjikov–Ivanov equation serves as an example to show its advantages.


\(\exp (-\phi (\xi ))\)-expansion Gerdjikov–Ivanov equation Riccati equation Exact solution 

Mathematics Subject Classification

35C07 35Q51 



Many thanks are due to the helpful comments and suggestions from the anonymous referee and support from the Scientific Research Fund of Zhejiang Provincial Education Department (Grant number Y201432746).


  1. 1.
    Rahman, N., Akter, S., Roshid, H.O., Alam, M.N.: Traveling wave solutions of the (1+1)-dimensional compound KdVB equation by \(\exp (-\phi (\eta ))\)-expansion method. Glob. J. Sci. Front. Res. 13, 7–13 (2013)Google Scholar
  2. 2.
    Islam, R., Alam, M.N., Hossain, A.K.M.K.S., Roshid, H.O., Akbar, M.A.: Traveling wave solutions of nonlinear evolution equations via \(\exp (-\phi (\eta ))\)-expansion method. Glob. J. Sci. Front. Res. 13, 63–71 (2013)Google Scholar
  3. 3.
    Khan, K., Akbar, M.A.: Application of \(\exp (-\phi (\xi ))\)-expansion method to find the exact solutions of modified Benjamin–Bona–Mahony equation. World Appl. Sci. J. 24, 1373–1377 (2013)Google Scholar
  4. 4.
    Rahman, N., Alam, M.N., Roshid, H.O., Akter, S., Akbar, M.A.: Application of \(\exp (-\phi (\xi ))\)-expansion method to find the exact solutions of Shorma–Tasso–Olver equation. Afr. J. Math. Comput. Sci. Res. 7, 1–6 (2014)CrossRefGoogle Scholar
  5. 5.
    Khan, K., Akbar, M.A.: The \(\exp (-\phi (\xi ))\)-expansion method for finding travelling wave solutions of Vakhnenko–Parkes equation. Int. J. Dyn. Syst. Differ. Equ. 5, 72–83 (2014)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Akbar, M.A., Ali, N.H.M.: Solitary wave solutions of the fourth order Boussinesq equation through the \(\exp (-\phi (\eta ))\)-expansion method. SpringerPlus 3, 344 (2014)CrossRefGoogle Scholar
  7. 7.
    Roshid, H.O., Rahman, M.A.: The \(\exp (-\phi (\eta ))\)-expansion method with application in the (1+1)-dimensional classical Boussinesq equations. Results Phys. 4, 150–155 (2014)CrossRefGoogle Scholar
  8. 8.
    Hafez, M.G., Alam, M.N., Akbar, M.A.: Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system. J. King Saud Univ. Sci. 27, 105–112 (2015)CrossRefGoogle Scholar
  9. 9.
    Roshid, H.O., Alam, M.N., Akbar, M.A.: Traveling wave solutions for fifth order (1+1)-dimensional Kaup–Kupershmidt equation with the help of \(\exp (-\phi (\eta ))\)-expansion method. Walailak J. Sci. Technol. 12, 1063–1073 (2015)Google Scholar
  10. 10.
    Zahran, E.H.M.: Exact traveling wave solutions of nano-ionic solitons and nano-ionic current of MTs using the \(\exp (-\phi (\xi ))\)-expansion method. Adv. Nanopart. 4, 25–36 (2015)CrossRefGoogle Scholar
  11. 11.
    Alam, M.N., Hafez, M.G., Akbar, M.A., Roshid, H.O.: Exact solutions to the (2+1)-dimensional Boussinesq equation via \(\exp (-\phi (\eta ))\)-expansion method. J. Sci. Res. 7, 1–10 (2015)CrossRefGoogle Scholar
  12. 12.
    Baskonus, H.M., Bulut, H., Atangana, A.: On the complex and hyperbolic structures of the longitudinal wave equation in a magneto-electro-elastic circular rod. Smart Mater. Struct. 25, 035022 (2016)CrossRefGoogle Scholar
  13. 13.
    Hafez, M.G.: Exact solutions to the (3+1)-dimensional coupled Klein–Gordon–Zakharov equation using \(\exp (-\phi (\xi ))\)-expansion method. Alex. Eng. J. 55, 1635–1645 (2016)CrossRefGoogle Scholar
  14. 14.
    Ali, A., Iqbal, M.A., Mohyud-Din, S.T.: Traveling wave solutions of generalized Zakharov–Kuznetsov–Benjamin–Bona–Mahony and simplified modified form of Camassa–Holm equation \(\exp (-\phi (\eta ))\)-expansion method. Egypt. J. Basic Appl. Sci. 3, 134–140 (2016)CrossRefGoogle Scholar
  15. 15.
    Bulut, H., Baskonus, H.M.: New complex hyperbolic function solutions for the (2+1)-dimensional dispersive long waterwave system. Math. Comput. Appl. 21, 6 (2016)Google Scholar
  16. 16.
    Alam, M.N., Tunc, C.: An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator-prey system. Alex. Eng. J. 55, 1855–1865 (2016)CrossRefGoogle Scholar
  17. 17.
    Khater, M.M.A.: Exact traveling wave solutions for the generalized Hirota–Satsuma couple KdV system using the \(\exp (-\phi (\xi ))\)-expansion method. Cogent Math. 3, 1172397 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kaplan, M., Bekir, A.: A novel analytical method for time-fractional differential equations. Optik 127, 8209–8214 (2016)CrossRefGoogle Scholar
  19. 19.
    Ali, A., Iqbal, M.A., Mohyud-Din, S.T.: New analytical solutions for nonlinear physical models of the coupled Higgs equation and the Maccari system via rational \(\exp (-\phi (\eta ))\)-expansion method. Pramana J. Phys. 87, 79 (2016)CrossRefGoogle Scholar
  20. 20.
    Baskonus, H.M., Bulut, H., Belgacem, F.B.M.: Analytical solutions for nonlinear longshort wave interaction systems with highly complex structure. J. Comput. Appl. Math. 312, 257–266 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Islam, M.R., Roshid, H.O.: Application of \(\exp (-\phi (\xi ))\)-expansion method for Tzitzeica type nonlinear evolution equations. J. Found. Appl. Phys. 4, 8–18 (2017)Google Scholar
  22. 22.
    Alam, M.N., Alam, M.M.: An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules. J. Taibah Univ. Sci. 11, 939–948 (2017)CrossRefGoogle Scholar
  23. 23.
    Mirzazadeh, M., Ekici, M., Zhou, Q., Sonmezoglu, A.: Analytical study of solitons in the fiber waveguide with power law nonlinearity. Superlattices Microstruct. 101, 493–506 (2017)CrossRefGoogle Scholar
  24. 24.
    Akbulut, A., Kaplan, M., Tascan, F.: The investigation of exact solutions of nonlinear partial differential equations by using \(\exp (-\phi (\xi ))\) method. Optik 132, 382–387 (2017)CrossRefGoogle Scholar
  25. 25.
    Kadkhoda, N., Jafari, H.: Analytical solutions of the GerdjikovIvanov equation by using \(\exp (-\phi (\xi ))\)-expansion method. Optik 139, 72–76 (2017)CrossRefGoogle Scholar
  26. 26.
    Ni, W.G., Dai, C.Q.: Note on same result of different anstz based on extended tanh-function method for nonlinear models. Appl. Math. Comput. 270, 434–440 (2015)MathSciNetGoogle Scholar
  27. 27.
    Rogers, C., Chow, K.W.: Localized pulses for the quintic derivative nonlinear Schödinger equation on a continuous-wave background. Phys. Rev. E 86, 037601 (2012)CrossRefGoogle Scholar
  28. 28.
    Triki, H., Alqahtani, R.T., Zhou, Q., Biswas, A.: New envelope solitons for Gerdjikov–Ivanov model in nonlinear fiber optics. Superlattices Microstruct. 111, 326–334 (2017)CrossRefGoogle Scholar
  29. 29.
    Biswas, A., Ekici, M., Sonmezoglu, A., Triki, H., Alshomrani, A.S., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons for GerdjikovIvanov model by extended trial equation scheme. Optik 157, 1241–1248 (2018)CrossRefGoogle Scholar
  30. 30.
    Lü, X., Ma, W.X., Yu, J., Lin, F., Khalique, C.M.: Envelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov model. Nonlinear Dyn. 82, 1211–1220 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zhijiang CollegeZhejiang University of TechnologyShaoxingPeople’s Republic of China

Personalised recommendations