Skip to main content
Log in

Simple heuristic for data-driven computational elasticity with material data involving noise and outliers: a local robust regression approach

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Data-driven computing in applied mechanics utilizes the material data set directly, and hence is free from errors and uncertainties stemming from the conventional material modeling. For data-driven computing in elasticity, this paper presents a simple heuristic that is robust against noise and outliers in a data set. For each structural element, we extract the material property from some nearest data points. Using the nearest neighbors reduces the influence of noise, compared with the existing method that uses a single data point. Also, the robust regression is adopted to reduce the influence of outliers. Numerical experiments on the static equilibrium analysis of trusses are performed to illustrate that the proposed method is robust against the presence of noise and outliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Since this example is a statically determinate truss, for any member strains there exists a compatible nodal displacement vector. What is meant to be explained here is that in the proposed method a solution is alway defined so as to satisfy the compatibility relation exactly.

References

  1. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46, 175–185 (1992)

    MathSciNet  Google Scholar 

  2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  3. Bessa, M.A., Bostanabad, R., Liu, Z., Hu, A., Apley, D.W., Brinson, C., Chen, W., Liu, W.K.: A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput. Methods Appl. Mech. Eng. 320, 633–667 (2017)

    Article  MathSciNet  Google Scholar 

  4. Chen, H., Chiang, R.H.L., Storey, V.C.: Business intelligence and analytics: from big data to big impact. MIS Q. Arch. 36, 1165–1188 (2012)

    Article  Google Scholar 

  5. Clément, A., Soize, C., Yvonnet, J.: Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis. Int. J. Numer. Meth. Eng. 91, 799–824 (2012)

    Article  Google Scholar 

  6. Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979)

    Article  MathSciNet  Google Scholar 

  7. Cleveland, W.S., Devlin, S.J.: Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988)

    Article  Google Scholar 

  8. Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Arch. Ration. Mech. Anal. 229, 79–123 (2018)

    Article  MathSciNet  Google Scholar 

  9. Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A.Y., Foufou, S., Bouras, A.: A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans. Emerg. Topics Comput. 2, 267–279 (2014)

    Article  Google Scholar 

  10. Fan, W., Hu, C.: Big graph analyses: from queries to dependencies and association rules. Data Sci. Eng. 2, 36–55 (2017)

    Article  Google Scholar 

  11. Flach, P.: Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  12. Gupta, M.R., Garcia, E.K., Chin, E.: Adaptive local linear regression with application to printer color management. IEEE Trans. Image Process. 17, 936–945 (2008)

    Article  MathSciNet  Google Scholar 

  13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009)

    Book  Google Scholar 

  14. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964)

    Article  MathSciNet  Google Scholar 

  15. Huber, P.J., Ronchetti, E.M.: Robust Statistics, 2nd edn. Wiley, Hoboken (2009)

    Book  Google Scholar 

  16. Ibañez, R., Abisset-Chavanne, E., Aguado, J.V., Gonzalez, D., Cueto, E., Chinesta, F.: A manifold learning approach to data-driven computational elasticity and inelasticity. Arch. Comput. Methods Eng. 25, 47–57 (2018)

    Article  MathSciNet  Google Scholar 

  17. Ibañez, R., Borzacchiello, D., Aguado, J.V., Abisset-Chavanne, E., Cueto, E., Ladeveze, P., Chinesta, F.: Data-driven non-linear elasticity: constitutive manifold construction and problem discretization. Comput. Mech. 60, 813–826 (2017)

    Article  MathSciNet  Google Scholar 

  18. Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 304, 81–101 (2016)

    Article  MathSciNet  Google Scholar 

  19. Kirchdoerfer, T., Ortiz, M.: Data driven computing with noisy material data sets. Comput. Methods Appl. Mech. Eng. 326, 622–641 (2017)

    Article  MathSciNet  Google Scholar 

  20. Kirchdoerfer, T., Ortiz, M.: Data-driven computing in dynamics. Int. J. Numer. Meth. Eng. 113, 1697–1710 (2018)

    Article  MathSciNet  Google Scholar 

  21. Klusemann, B., Ortiz, M.: Acceleration of material-dominated calculations via phase-space simplicial subdivision and interpolation. Int. J. Numer. Meth. Eng. 103, 256–274 (2015)

    Article  MathSciNet  Google Scholar 

  22. Lee, T., Ouarda, T.B.M.J., Yoon, S.: KNN-based local linear regression for the analysis and simulation of low flow extremes under climatic influence. Clim. Dyn. 49, 3493–3511 (2017)

    Article  Google Scholar 

  23. Maronna, R., Martin, D., Yohai, V.: Robust Statistics: Theory and Methods. Wiley, Chichester (2006)

    Book  Google Scholar 

  24. Mattmann, C.A.: Computing: a vision for data science. Nature 493, 473–475 (2013)

    Article  Google Scholar 

  25. Miguel, E., Bradley, D., Thomaszewski, B., Bickel, B., Matusik, W., Otaduy, M.A., Marschner, S.: Data-driven estimation of cloth simulation models. Comput. Graph. Forum 31, 519–528 (2012)

    Article  Google Scholar 

  26. Nguyen, L.T.K., Keip, M.-A.: A data-driven approach to nonlinear elasticity. Comput. Struct. 194, 97–115 (2018)

    Article  Google Scholar 

  27. Prairie, J.R., Rajagopalan, B., Fulp, T.J., Zagona, E.A.: Statistical nonparametric model for natural salt estimation. J. Environ. Eng. 131, 130–138 (2005)

    Article  Google Scholar 

  28. Ruiters, R., Schwartz, C., Klein, R.: Data driven surface reflectance from sparse and irregular samples. Comput. Graph. Forum 31, 315–324 (2012)

    Article  Google Scholar 

  29. Siuly, S., Zhang, Y.: Medical big data: neurological diseases diagnosis through medical data analysis. Data Sci. Eng. 1, 54–64 (2016)

    Article  Google Scholar 

  30. Temizer, İ., Wriggers, P.: An adaptive method for homogenization in orthotropic nonlinear elasticity. Comput. Methods Appl. Mech. Eng. 196, 3409–3423 (2007)

    Article  MathSciNet  Google Scholar 

  31. Temizer, İ., Zohdi, T.I.: A numerical method for homogenization in non-linear elasticity. Comput. Mech. 40, 281–298 (2007)

    Article  Google Scholar 

  32. Terada, K., Kato, J., Hirayama, N., Inugai, T., Yamamoto, K.: A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials. Comput. Mech. 52, 1199–1219 (2013)

    Article  MathSciNet  Google Scholar 

  33. Tsai, C.W., Lai, C.F., Chao, H.C., Vasilakos, A.V.: Big data analytics: a survey. J. Big Data 21, Article No. 21 (2015)

    Article  Google Scholar 

  34. Wang, H., O’Brien, J.F., Ramamoorthi, R.: Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. 30, Article No. 71 (2011)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by JSPS KAKENHI 17K06633 and 18K18898.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Kanno.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanno, Y. Simple heuristic for data-driven computational elasticity with material data involving noise and outliers: a local robust regression approach. Japan J. Indust. Appl. Math. 35, 1085–1101 (2018). https://doi.org/10.1007/s13160-018-0323-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-018-0323-y

Keywords

Mathematics Subject Classification

Navigation