Skip to main content
Log in

A sinc-Gaussian solver for general second order discontinuous problems

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The sinc-Gaussian sampling operator has become an efficient tool in interpolating entire and analytic functions with appropriate growth properties. It accelerates the rate of convergence and remarkably enhance the slow rate of convergence of the classical sinc method. In this paper we compute the eigenvalues of discontinuous second order boundary-value problems using the sinc-Gaussian sampling technique. The problem is defined in two ways throughout \([-1,1]\) and is not in general self adjoint. The boundary and compatibility conditions are assumed to be regular in the sense of Birkhoff to guarantee the existence and discreteness of the eigenvalues, which are in general complex numbers and are not necessarily simple. Numerical examples are worked out with graphical illustrations and comparisons with the classical sinc-technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Annaby, M.H., Asharabi, R.M.: Computing eigenvalues of boundary-value problems using sinc-Gaussian method. Sample Theory Signal Image Process. 7(3), 293–311 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Annaby, M.H., Asharabi, R.M.: Approximating eigenvalues of discontinuous problems by sampling theorems. J. Numer. Math. 16, 163–183 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Annaby, M.H., Tharwat, M.M.: A sinc-Gaussian technique for computing eigenvalues of second-order linear pencils. Appl. Numer. Math. 63, 129–137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Annaby, M.H., Freiling, G.: A sampling theorem for transforms with discontinuous kernels. Appl. Anal. 83, 1053–1075 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Asharabi, R.M.: Generalized sinc-Gaussian sampling involving derivatives. Numer. Algorithms 73, 1055–1072 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Asharabi, R.M., Prestin, J.: A modification of Hermite sampling with a Gaussian multiplier. Numer. Funct. Anal. Optim. 36, 419–437 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Birkhoff, G.D.: Boundary value and expansion problems of ordinary linear differential operators. Trans. Am. Math. Soc. 9, 373–395 (1908)

    Article  MATH  Google Scholar 

  8. Evard, J-Cl, Jafari, F.: A complex Rolle’s theorem. Am. Math. Month. 99, 858–861 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kobayashi, M.: Eigenfunction expansions: a discontinuous version. SIAM J. Appl. Math. 50, 910–917 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kobayashi, M.: A uniqueness proof for discontinuous inverse Sturm–Liouville problems with symmetric potentials. Inv. Probl. 5, 767–781 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lund, J., Bowers, K.: Sinc Methods for Quadrature and Differential Equations. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  12. Muravei, L.A.: Riesz bases in \(L^{2}(-1,1).\). Proc. Steklov Inst. Mat. 91, 117–136 (1967)

    MATH  Google Scholar 

  13. Naimark, M.A.: Linear Differential Operators. George Harrap, London (1967)

    MATH  Google Scholar 

  14. Qian, L.: On the regularized Whittaker–Kotel’nikov–Shannon sampling formula. Proc. Am. Math. Soc. 131, 1169–1176 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qian, L., Creamer, D.B.: A modification of the sampling series with a Gaussian multiplie. Sample Theory Signal Image Process. 5, 1–20 (2006)

    MATH  Google Scholar 

  16. Qian, L., Creamer, D.B.: Localized sampling in the presence of noise. Appl. Math. Lett. 19, 351–355 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schmeisser, G., Stenger, F.: Sinc approximation with a Gaussian multiplier. Sampl. Theory Signal Image Process. 6, 199–221 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Stenger, F.: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev. 23, 156–224 (1981)

    MathSciNet  MATH  Google Scholar 

  19. Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993)

    Book  MATH  Google Scholar 

  20. Tanaka, K., Sugihara, M., Murota, K.: Complex-analytic approach to the sinc-Gauss sampling formula. Jpn. J. Indust. Appl. Math. 25, 209–231 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tharwat, M.M.: Approximation of eigenvalues of Dirac systems with eigenparameter in all boundary conditions by sinc-Gaussian method. Appl. Math. Comput. 262, 113–127 (2015)

    MathSciNet  Google Scholar 

  22. Zayed, A.I.: Advances in Shannon’s Sampling Theory. CRC Press, Baco Raton (1993)

    MATH  Google Scholar 

  23. Zayed, A.I., García, A.G.: Kramer’s sampling theorem with discontinuous kernels. Result. Math. 34, 197–206 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is partially supported by Alexander von Humboldt foundation under the Grants 3.4-EGY/1039259 and 3.4-JEM/1142916.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Annaby.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annaby, M.H., Asharabi, R.M. A sinc-Gaussian solver for general second order discontinuous problems. Japan J. Indust. Appl. Math. 35, 653–668 (2018). https://doi.org/10.1007/s13160-018-0305-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-018-0305-0

Keywords

Mathematics Subject Classification

Navigation