Advertisement

A sinc-Gaussian solver for general second order discontinuous problems

  • M. H. Annaby
  • R. M. Asharabi
Original Paper Area 2
  • 54 Downloads

Abstract

The sinc-Gaussian sampling operator has become an efficient tool in interpolating entire and analytic functions with appropriate growth properties. It accelerates the rate of convergence and remarkably enhance the slow rate of convergence of the classical sinc method. In this paper we compute the eigenvalues of discontinuous second order boundary-value problems using the sinc-Gaussian sampling technique. The problem is defined in two ways throughout \([-1,1]\) and is not in general self adjoint. The boundary and compatibility conditions are assumed to be regular in the sense of Birkhoff to guarantee the existence and discreteness of the eigenvalues, which are in general complex numbers and are not necessarily simple. Numerical examples are worked out with graphical illustrations and comparisons with the classical sinc-technique.

Keywords

Sinc method Discontinuous problems Birkhoff regularity Gaussian convergence factor 

Mathematics Subject Classification

94A20 65L15 65L70 65N15 65N25 

Notes

Acknowledgements

This research is partially supported by Alexander von Humboldt foundation under the Grants 3.4-EGY/1039259 and 3.4-JEM/1142916.

References

  1. 1.
    Annaby, M.H., Asharabi, R.M.: Computing eigenvalues of boundary-value problems using sinc-Gaussian method. Sample Theory Signal Image Process. 7(3), 293–311 (2008)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Annaby, M.H., Asharabi, R.M.: Approximating eigenvalues of discontinuous problems by sampling theorems. J. Numer. Math. 16, 163–183 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Annaby, M.H., Tharwat, M.M.: A sinc-Gaussian technique for computing eigenvalues of second-order linear pencils. Appl. Numer. Math. 63, 129–137 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Annaby, M.H., Freiling, G.: A sampling theorem for transforms with discontinuous kernels. Appl. Anal. 83, 1053–1075 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Asharabi, R.M.: Generalized sinc-Gaussian sampling involving derivatives. Numer. Algorithms 73, 1055–1072 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Asharabi, R.M., Prestin, J.: A modification of Hermite sampling with a Gaussian multiplier. Numer. Funct. Anal. Optim. 36, 419–437 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Birkhoff, G.D.: Boundary value and expansion problems of ordinary linear differential operators. Trans. Am. Math. Soc. 9, 373–395 (1908)CrossRefzbMATHGoogle Scholar
  8. 8.
    Evard, J-Cl, Jafari, F.: A complex Rolle’s theorem. Am. Math. Month. 99, 858–861 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kobayashi, M.: Eigenfunction expansions: a discontinuous version. SIAM J. Appl. Math. 50, 910–917 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kobayashi, M.: A uniqueness proof for discontinuous inverse Sturm–Liouville problems with symmetric potentials. Inv. Probl. 5, 767–781 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lund, J., Bowers, K.: Sinc Methods for Quadrature and Differential Equations. SIAM, Philadelphia (1992)CrossRefzbMATHGoogle Scholar
  12. 12.
    Muravei, L.A.: Riesz bases in \(L^{2}(-1,1).\). Proc. Steklov Inst. Mat. 91, 117–136 (1967)zbMATHGoogle Scholar
  13. 13.
    Naimark, M.A.: Linear Differential Operators. George Harrap, London (1967)zbMATHGoogle Scholar
  14. 14.
    Qian, L.: On the regularized Whittaker–Kotel’nikov–Shannon sampling formula. Proc. Am. Math. Soc. 131, 1169–1176 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Qian, L., Creamer, D.B.: A modification of the sampling series with a Gaussian multiplie. Sample Theory Signal Image Process. 5, 1–20 (2006)zbMATHGoogle Scholar
  16. 16.
    Qian, L., Creamer, D.B.: Localized sampling in the presence of noise. Appl. Math. Lett. 19, 351–355 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schmeisser, G., Stenger, F.: Sinc approximation with a Gaussian multiplier. Sampl. Theory Signal Image Process. 6, 199–221 (2007)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Stenger, F.: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev. 23, 156–224 (1981)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  20. 20.
    Tanaka, K., Sugihara, M., Murota, K.: Complex-analytic approach to the sinc-Gauss sampling formula. Jpn. J. Indust. Appl. Math. 25, 209–231 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tharwat, M.M.: Approximation of eigenvalues of Dirac systems with eigenparameter in all boundary conditions by sinc-Gaussian method. Appl. Math. Comput. 262, 113–127 (2015)MathSciNetGoogle Scholar
  22. 22.
    Zayed, A.I.: Advances in Shannon’s Sampling Theory. CRC Press, Baco Raton (1993)zbMATHGoogle Scholar
  23. 23.
    Zayed, A.I., García, A.G.: Kramer’s sampling theorem with discontinuous kernels. Result. Math. 34, 197–206 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Department of Mathematics, College of Arts and SciencesNajran UniversityNajranSaudi Arabia

Personalised recommendations