Advertisement

Mechanics shape function of quadrilateral element composed of subdivision triangles for recursive transfer method

  • Hatsuhiro KatoEmail author
  • Hatsuyoshi Kato
  • Yoshimasa Naito
Original Paper Area 2
  • 60 Downloads

Abstract

The recursive transfer method (RTM) provides a unique numerical means of extracting a localised wave in a scattering problem. However, various shapes of scatterers were hitherto difficult to adapt RTM, because mesh elements were limited to rectangles. In this study, we propose what we call mechanics shape function using subdivision triangles of a quadrilateral element, and we extend RTM to be valid for various shapes of scatterers. The effect of the mechanics shape function is evaluated using a uniform waveguide with a distorted mesh.

Keywords

Recursive transfer method (RTM) Mechanics shape function Weak-form discretisation Biharmonic wave Flexural wave 

Mathematics Subject Classification

65M22 

References

  1. 1.
    Antonakakis, T., Craster, R.V., Guenneau, S.: Moulding and shielding flexural waves in elastic plates. Europhys. Lett. 105 (2014). doi: 10.1209/0295-5075/105/54004
  2. 2.
    Farhat, M., Guenneau, S., Enoch, S., Movchan, A.B.: Cloaking bending waves propagating in thin elastic plates. Phys. Rev. B 79 (2009). doi: 10.1103/PhysRevB.79.033102
  3. 3.
    Yamanouchi, K. (ed.): Elastic device technology. Japan Academic Society 150-th committee of elastic device technology. Ohmsha, Tokyo (2004)Google Scholar
  4. 4.
    Royer, D., Dieulesaint, E.: Elastic Waves in Solids II: Generation, Acousto-optic Interaction, Applications, Chap. 5. Springer, Berlin (2000)Google Scholar
  5. 5.
    Haslinger, S.G., Movchan, A.B., Movchan, N.V., McPhedran, R.C.: Symmetry and resonant modes in platonic grating stacks. Waves Random Complex Media 24, 126–148 (2014)CrossRefzbMATHGoogle Scholar
  6. 6.
    Brebbia, C.A., Connor, J.J.: Fundamentals of Finite Element Techniques for Structural Engineers. Butterworths, London (1973)Google Scholar
  7. 7.
    Zienkiewicz, O.C., Taylor, R.L.: The finite element method, volume2: Solid and fluid mechanics dynamics and non-linearity, Forth edn. McGrawHill, London (1989)Google Scholar
  8. 8.
    Kato, H., Kato, H.: An application of recursive transfer method to flexural waves I: A discretisation scheme using weak form theory and waveguide modes on inhomogeneous static plates. IEICE Trans. E97-A, 1075–1085 (2014)Google Scholar
  9. 9.
    Kato, H., Kato, H.: An application of recursive transfer method to flexural waves II: Reflection enhancement caused by resonant scattering in acoustic waveguide. IEICE Trans. E98-A, 354–361 (2015)Google Scholar
  10. 10.
    Kato, H., Kato, H.: Weak-form discretization scheme for recursive transfer method and discretization errors. Trans. JSIAM 25, 31–46 (2015)Google Scholar
  11. 11.
    Kato, H., Kato, H.: Accuracy of weak-form discretisation and extension of recursive transfer method for scattering problems governed by fourth-order differential equation. J. Phys. Soc. Jpn. 85 (2016). doi: 10.7566/JPSJ.85.054001
  12. 12.
    Appelbaum, J.A., Hamann, D.R.: Self-consistent electronic structure of solid surfaces. Phys. Rev. B 6, 2166–2177 (1972)CrossRefGoogle Scholar
  13. 13.
    Hirose, K., Tsukada, M.: First-principles calculation of the electronic structure for a dielectrode junction system under strong field and current. Phys. Rev. B 51, 5278–5290 (1995)CrossRefGoogle Scholar
  14. 14.
    Kato, H., Kanno, Y.: An analysis on microwave absorption of the catalyst in a thermal decomposition reaction by the recursive transfer method. Jpn. J. Appl. Phys. 47, 4846–4850 (2008)CrossRefGoogle Scholar
  15. 15.
    Kato, H., Kato, H.: New numerical method of scattering problems using recursive transfer method under the weak-form discretization scheme. In: Proceedng of the 44-th Numerical Analysis Symposioum. Katsunuma, pp. 1–4 (2015)Google Scholar
  16. 16.
    Kato, H., Kato, H.: Weak-form discretisation, waveguide boundary conditions and extraction of quasi-localized waves causing Fano resonance. IEICE Trans. E97–A, 1720–1727 (2014)Google Scholar
  17. 17.
    Šolín, P.: Partial Differential Equations and the Finite Element Method. Wiley, Hoboken (2006)zbMATHGoogle Scholar
  18. 18.
    Chen, W., Fu, Z.J., Chen, C.S.: Recent Advances in Radial Basis Function Collocation Methods. Springer, Heidelberg (2014)CrossRefzbMATHGoogle Scholar
  19. 19.
    Strouboulis, T., Babuška, I., Copps, K.: The design and analysis of the Generalized Finite Element Method. Comput. Methods Appl. Mech. Eng. 181, 43–69 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kato, H., Kato, H.: A novel formulation of flexural waves on inhomogeneous elastic plates using tensor basis. Trans. JSIAM 22, 253–267 (2012)Google Scholar
  21. 21.
    Bobrovnitskii, YuI: Calculation of the power flow in flexural waves on thin plates. J. Sound Vib. 149, 103–106 (1996)CrossRefGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan KK 2017

Authors and Affiliations

  1. 1.Interdisciplinary Graduate SchoolUniversity of YamanashiKofuJapan
  2. 2.NIT Tomakomai CollegeTomakomaiJapan
  3. 3.University of YamanashiKofuJapan

Personalised recommendations