# Mechanics shape function of quadrilateral element composed of subdivision triangles for recursive transfer method

Original Paper Area 2

First Online:

- 60 Downloads

## Abstract

The recursive transfer method (RTM) provides a unique numerical means of extracting a localised wave in a scattering problem. However, various shapes of scatterers were hitherto difficult to adapt RTM, because mesh elements were limited to rectangles. In this study, we propose what we call mechanics shape function using subdivision triangles of a quadrilateral element, and we extend RTM to be valid for various shapes of scatterers. The effect of the mechanics shape function is evaluated using a uniform waveguide with a distorted mesh.

## Keywords

Recursive transfer method (RTM) Mechanics shape function Weak-form discretisation Biharmonic wave Flexural wave## Mathematics Subject Classification

65M22## References

- 1.Antonakakis, T., Craster, R.V., Guenneau, S.: Moulding and shielding flexural waves in elastic plates. Europhys. Lett.
**105**(2014). doi: 10.1209/0295-5075/105/54004 - 2.Farhat, M., Guenneau, S., Enoch, S., Movchan, A.B.: Cloaking bending waves propagating in thin elastic plates. Phys. Rev. B
**79**(2009). doi: 10.1103/PhysRevB.79.033102 - 3.Yamanouchi, K. (ed.): Elastic device technology. Japan Academic Society 150-th committee of elastic device technology. Ohmsha, Tokyo (2004)Google Scholar
- 4.Royer, D., Dieulesaint, E.: Elastic Waves in Solids II: Generation, Acousto-optic Interaction, Applications, Chap. 5. Springer, Berlin (2000)Google Scholar
- 5.Haslinger, S.G., Movchan, A.B., Movchan, N.V., McPhedran, R.C.: Symmetry and resonant modes in platonic grating stacks. Waves Random Complex Media
**24**, 126–148 (2014)CrossRefzbMATHGoogle Scholar - 6.Brebbia, C.A., Connor, J.J.: Fundamentals of Finite Element Techniques for Structural Engineers. Butterworths, London (1973)Google Scholar
- 7.Zienkiewicz, O.C., Taylor, R.L.: The finite element method, volume2: Solid and fluid mechanics dynamics and non-linearity, Forth edn. McGrawHill, London (1989)Google Scholar
- 8.Kato, H., Kato, H.: An application of recursive transfer method to flexural waves I: A discretisation scheme using weak form theory and waveguide modes on inhomogeneous static plates. IEICE Trans.
**E97-A**, 1075–1085 (2014)Google Scholar - 9.Kato, H., Kato, H.: An application of recursive transfer method to flexural waves II: Reflection enhancement caused by resonant scattering in acoustic waveguide. IEICE Trans.
**E98-A**, 354–361 (2015)Google Scholar - 10.Kato, H., Kato, H.: Weak-form discretization scheme for recursive transfer method and discretization errors. Trans. JSIAM
**25**, 31–46 (2015)Google Scholar - 11.Kato, H., Kato, H.: Accuracy of weak-form discretisation and extension of recursive transfer method for scattering problems governed by fourth-order differential equation. J. Phys. Soc. Jpn.
**85**(2016). doi: 10.7566/JPSJ.85.054001 - 12.Appelbaum, J.A., Hamann, D.R.: Self-consistent electronic structure of solid surfaces. Phys. Rev. B
**6**, 2166–2177 (1972)CrossRefGoogle Scholar - 13.Hirose, K., Tsukada, M.: First-principles calculation of the electronic structure for a dielectrode junction system under strong field and current. Phys. Rev. B
**51**, 5278–5290 (1995)CrossRefGoogle Scholar - 14.Kato, H., Kanno, Y.: An analysis on microwave absorption of the catalyst in a thermal decomposition reaction by the recursive transfer method. Jpn. J. Appl. Phys.
**47**, 4846–4850 (2008)CrossRefGoogle Scholar - 15.Kato, H., Kato, H.: New numerical method of scattering problems using recursive transfer method under the weak-form discretization scheme. In: Proceedng of the 44-th Numerical Analysis Symposioum. Katsunuma, pp. 1–4 (2015)Google Scholar
- 16.Kato, H., Kato, H.: Weak-form discretisation, waveguide boundary conditions and extraction of quasi-localized waves causing Fano resonance. IEICE Trans.
**E97–A**, 1720–1727 (2014)Google Scholar - 17.Šolín, P.: Partial Differential Equations and the Finite Element Method. Wiley, Hoboken (2006)zbMATHGoogle Scholar
- 18.Chen, W., Fu, Z.J., Chen, C.S.: Recent Advances in Radial Basis Function Collocation Methods. Springer, Heidelberg (2014)CrossRefzbMATHGoogle Scholar
- 19.Strouboulis, T., Babuška, I., Copps, K.: The design and analysis of the Generalized Finite Element Method. Comput. Methods Appl. Mech. Eng.
**181**, 43–69 (2000)MathSciNetCrossRefzbMATHGoogle Scholar - 20.Kato, H., Kato, H.: A novel formulation of flexural waves on inhomogeneous elastic plates using tensor basis. Trans. JSIAM
**22**, 253–267 (2012)Google Scholar - 21.Bobrovnitskii, YuI: Calculation of the power flow in flexural waves on thin plates. J. Sound Vib.
**149**, 103–106 (1996)CrossRefGoogle Scholar

## Copyright information

© The JJIAM Publishing Committee and Springer Japan KK 2017