Advertisement

A stronger multiple exchange property for \(\hbox {M}^{\natural }\)-concave functions

  • Kazuo MurotaEmail author
Original Paper Area 2
  • 79 Downloads

Abstract

The multiple exchange property for matroid bases has recently been generalized for valuated matroids and \(\hbox {M}^{\natural }\)-concave set functions. This paper establishes a stronger form of this multiple exchange property that imposes a cardinality condition on the exchangeable subset. The stronger form immediately implies the defining exchange property of \(\hbox {M}^{\natural }\)-concave set functions, which was not the case with the recently established multiple exchange property without the cardinality condition.

Keywords

Discrete convex analysis Matroid Exchange property Combinatorial optimization 

Mathematics Subject Classification

52B40 52A41 

Notes

Acknowledgements

The author thanks Akiyoshi Shioura for suggesting a simplification in the proof of Sect. 3. He is also thankful to Kenjiro Takazawa and Akihisa Tamura for helpful comments.

References

  1. 1.
    Dress, A.W.M., Wenzel, W.: Valuated matroid: a new look at the greedy algorithm. Appl. Math. Lett. 3, 33–35 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dress, A.W.M., Wenzel, W.: Valuated matroids. Adv. Math. 93, 214–250 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fujishige, S.: Submodular Functions and Optimization. Elsevier, Amsterdam (2005)zbMATHGoogle Scholar
  4. 4.
    Gul, F., Stacchetti, E.: Walrasian equilibrium with gross substitutes. J. Econ. Theory 87, 95–124 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kelso Jr., A.S., Crawford, V.P.: Job matching, coalition formation, and gross substitutes. Econometrica 50, 1483–1504 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kung, J.P.S.: Basis-exchange properties. In: White, N. (ed.) Theory of Matroids, Chapter 4, pp. 62–75. Cambridge University Press, London (1986)CrossRefGoogle Scholar
  7. 7.
    Murota, K.: Fenchel-type duality for matroid valuations. Math. Program. 82, 357–375 (1998)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Murota, K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    Murota, K.: Recent developments in discrete convex analysis. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, Chapter 11, pp. 219–260. Springer, Berlin (2009)CrossRefGoogle Scholar
  10. 10.
    Murota, K.: Discrete convex analysis: a tool for economics and game theory. J. Mech. Inst. Des. 1, 151–273 (2016)Google Scholar
  11. 11.
    Murota, K.: Multiple exchange property for M\(^{\natural }\)-concave functions and valuated matroids. Math. Oper. Res. (to appear)Google Scholar
  12. 12.
    Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  14. 14.
    Shioura, A., Tamura, A.: Gross substitutes condition and discrete concavity for multi-unit valuations: a survey. J. Oper. Res. Soc. Jpn. 58, 61–103 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tamura, A.: Applications of discrete convex analysis to mathematical economics. Publ. Res. Inst. Math. Sci. 40, 1015–1037 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tamura, A.: Discrete Convex Analysis and Game Theory (in Japanese). Asakura Publishing Co., Tokyo (2009)Google Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan KK 2017

Authors and Affiliations

  1. 1.School of Business AdministrationTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations