Advertisement

A differential equation model of retinal processing for understanding lightness optical illusions

  • Takamichi SushidaEmail author
  • Shintaro Kondo
  • Kokichi Sugihara
  • Masayasu Mimura
Original Paper Area 1
  • 250 Downloads

Abstract

This paper proposes a differential equation model of the human vision system. Our model has a hierarchical structure in the known retinal cell neural network, and hence, enable to explain what aspects of behaviors of the vision system is affected by which parameters. As the result, our model possesses the following two characteristics: First, it enable the derivation of an integral equation model with a Mexican-hat shape kernel as a necessary result of mechanisms (reduction of the retinal image resolution and a self-control mechanism formed by non-local interaction), in contrast to previous models that assumed various types of Mexican-hat shapes a priori. Second, it can explain two mutually contradicting phenomena called lightness contrast and assimilation. Moreover, our model explains the reason why lightness optical illusions do or do not occur via the magnitude of a control parameter.

Keywords

Retinal information processing Lightness optical illusion Mathematical modeling Convolution Differential equation 

Mathematics Subject Classification

93A30 92C20 44A35 35K57 

Notes

Acknowledgements

The authors would like to thank the reviewers for helpful comments and fruitful suggestions. This work is partly supported by Grant-in-Aid for Basic Scientific Research (A) No. 16H01728 of MEXT. MM is partially supported by JSPS KAKENHI Grant No. 15K13462. Additionally, in this work, we used the computer of the MEXT Joint Usage / Research Center “Center for Mathematical Modeling and Applications”, Meiji University, Meiji Institute for Advanced Study of Mathematical Sciences (MIMS).

References

  1. 1.
    Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A. 2, 284–299 (1985)CrossRefGoogle Scholar
  2. 2.
    Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton (1965)zbMATHGoogle Scholar
  3. 3.
    Anstis, S.: Moving objects appear to slow down at low contrasts. Neural Netw. 16, 933–938 (2003)CrossRefGoogle Scholar
  4. 4.
    Arai, H.: A nonlinear model of visual information processing on discrete maximal overlap wavelets. Interdiscip. Inf. Sci. 11, 177–190 (2005)MathSciNetGoogle Scholar
  5. 5.
    Arai, H., Arai, S.: Framelet analysis of some geometric illusions. Jpn. J. Ind. Appl. Math. 27, 23–46 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arend, L.E., Buehler, J.N., Lockhead, G.R.: Difference information in lightness perception. Percept. Psychophys. 9, 367–370 (1971)CrossRefGoogle Scholar
  7. 7.
    Astrid, Z., Brooks, K R., Ghebreab, S.: An exponential filter model predicts lightness illusions. Front. Hum. Neurosci. 9, Article 368 (2015)Google Scholar
  8. 8.
    Atici, F.M., Guseinov, G.S.: On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions. J. Comput. Appl. Math. 132, 341–356 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Blakeslee, B., McCourt, M.E.: A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction. Vis. Res. 39, 4361–4377 (1999)CrossRefGoogle Scholar
  10. 10.
    Blakeslee, B., Cope, D., McCourt, M.E.: The Oriented Difference of Gaussians (ODOG) model of brightness perception. Overview and executable Mathematica notebooks. Behav. Res. Methods 48, 306–312 (2016)CrossRefGoogle Scholar
  11. 11.
    Bloomfield, S.A., Volgyi, B.: The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat. Rev. Neurosci. 10, 495–506 (2009)CrossRefGoogle Scholar
  12. 12.
    Bressloff, P.C.: Spontaneous symmetry breaking in self-organizing neural fields. Biol. Cybernet. 93, 256–274 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Burr, D., Morrone, M.: Impulse-response functions for chromatic and achromatic stimuli. J. Opt. Soc. Am. A. 10, 1706–1713 (1993)CrossRefGoogle Scholar
  14. 14.
    Fujii, K., Matsuoka, A., Morita, T.: Analysis of the optical illusion by lateral inhibition. Jpn. J. Med. Electron. Biol. Eng. 5, 25–34 (1967) (in Japanese)Google Scholar
  15. 15.
    Fujii, K., Morita, T., Matsuoka, A.: Analysis of visual illusions, contrast and assimilation by lateral inhibition model. Jpn. J. Med. Electron. Biol. Eng. 11, 37–43 (1973) (in Japanese) Google Scholar
  16. 16.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, Third edn. Prentice Hall, Upper Saddle River (2007)Google Scholar
  17. 17.
    Gregory, R.L.: The Intelligent Eye. Weidenfeld and Nicholson, London (1970)Google Scholar
  18. 18.
    Hartline, H.K., Ratliff, F.: Inhibitory interaction of receptor units in the eye of Limulus. J. Gen. Physiol. 40, 357–376 (1957)CrossRefGoogle Scholar
  19. 19.
    Hayashi, Y., Urakubo, H., Ishii, S.: An explanation of an afterimage rotation illusion by focusing time of retinal ON/OFF response. IEICE Techn. Rep. 113, 31–36 (2014) (in Japanese) Google Scholar
  20. 20.
    Hayashi, Y., Ishii, S., Urakubo, H.: A computational model of afterimage rotation in the peripheral drift illusion based on retinal ON/OFF responses. PLoS ONE. 9, e115464 (2014)CrossRefGoogle Scholar
  21. 21.
    Helson, H.: Studies of anomalous contrast and assimilation. JOSA 53, 179–184 (1963)CrossRefGoogle Scholar
  22. 22.
    Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cats’s visual cortex. J. Physiol. 160, 106–154 (1962)CrossRefGoogle Scholar
  23. 23.
    Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968)CrossRefGoogle Scholar
  24. 24.
    Johnston, A., Clifford, W.G.: A unified account of three apparent motion illusions. Vis. Res. 35, 1109–1123 (1995)CrossRefGoogle Scholar
  25. 25.
    Kuffler, S.W.: Discharge patterns and functional organization of mammalian retina. J. Neourophysiol. 16, 37–68 (1953)CrossRefGoogle Scholar
  26. 26.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science. Health Professions Division, 4th edn. McGraw-Hill, Pennsylvania (2000)Google Scholar
  27. 27.
    Kaneko, A.: Receptive field organization of bipolar and amacrine cells in the goldfish retina. J. Physiol. 235, 133–153 (1973)CrossRefGoogle Scholar
  28. 28.
    Kaplan, E., Shapley, R.M.: The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986)CrossRefGoogle Scholar
  29. 29.
    Kitaoka, A.: Introduction to Optical Illusion. Asakura-Shoten, Tokyo (2010) (in Japanese) Google Scholar
  30. 30.
    Laing, C., Troy, W.: Two-bump solutions of Amari-type models of neuronal pattern formation. Phys. D 178, 190–218 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Mach, E.: The Analysis of Sensation. Dover, New York (Original work published 1914) (1959)Google Scholar
  32. 32.
    Marr, D.: Vision. MIT Press, Cambridge (1982)Google Scholar
  33. 33.
    Marr, D., Ellen, H.: Theory of edge detection. Proc. R. Soc. Lond. [Biol.]. 207, 187–217 (1980)CrossRefGoogle Scholar
  34. 34.
    Masland, R.H.: The fundamental plan of the retina. Nat. Neurosci. 9, 877–886 (2001)CrossRefGoogle Scholar
  35. 35.
    Miura, K., Osa, A., Miike, H.: A simulation of the footsteps illusion using a reaction diffusion model. Inst. Electr. Eng. Jpn. 129, 1156–1161 (2009)Google Scholar
  36. 36.
    Mo, C.-H., Koch, C.: Modeling reverse-phi motion-selective neurons in cortex: double synaptic-veto mechanism. Neural Comput. 15, 735–759 (2003)CrossRefzbMATHGoogle Scholar
  37. 37.
    Ninomiya, H., Tanaka, Y., Yamamoto, H.: Reaction, diffusion and non-local interaction. J. Math. Biol. 75, 1203–1233 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Nomura, A., Ichikawa, M., Miike, H., Ebihara, M., Mahara, H., Sakurai, T.: Realizing visual functions with the reaction-diffusion mechanism. J. Phys. Soc. 72, 2385–2395 (2003)CrossRefGoogle Scholar
  39. 39.
    Ratliff, F.: Why Mach bands are not seen at the edges of a step. Vis. Res. 24, 163–165 (1984)CrossRefGoogle Scholar
  40. 40.
    Ratliff, F., Knight, B.W., Milkman, N.: Superposition of excitatory and inhibitory influences in the retina of Limulus: effect of delayed inhibition. Proc. Natl. Acad. Sci. 67, 1558–1564 (1970)CrossRefGoogle Scholar
  41. 41.
    Robinson, J.O.: The Psychology of Visual Illusion. Dover, Mineola (1998)Google Scholar
  42. 42.
    Rodieck, R.W.: Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis. Res. 5, 583–601 (1965)CrossRefGoogle Scholar
  43. 43.
    Shimakura, N.: Elliptic Partial Differential Operator. Kinokuniya Company LTD, Tokyo (1978) (in Japanese) Google Scholar
  44. 44.
    Shinozaki, T., Wakabayashi, T., Kimura, M.: Partial Differential Equation and Green Function. Gendai Kougakusya Press, Tokyo (2002) (in Japanese) Google Scholar
  45. 45.
    Tachibana, M., Okada, T.: Release of endogenous excitatory amino acids from ON-type bipolar cells isolated from the goldfish retina. J. Neurosci. 11, 2199–2208 (1991)Google Scholar
  46. 46.
    Yoshida, K.: Functional Analysis. Springer, Berlin (1971)CrossRefGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan KK 2017

Authors and Affiliations

  • Takamichi Sushida
    • 1
    Email author
  • Shintaro Kondo
    • 2
  • Kokichi Sugihara
    • 3
  • Masayasu Mimura
    • 3
  1. 1.Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan
  2. 2.Department of Electrical, Electronic and Computer EngineeringGifu UniversityGifuJapan
  3. 3.Meiji Institute for Advanced Study of Mathematical SciencesMeiji UniversityTokyoJapan

Personalised recommendations