Skip to main content
Log in

Optimal exercise boundary via intermediate function with jump risk

  • Original Paper
  • Area 4
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a simple numerical method to determine the optimal exercise boundary for American put option with jump risk. Our intermediate function obtained by the partial integro-differential equation can easily determine the optimal exercise boundary. We use finite difference method characterized by explicit scheme in continuation region and extrapolation near optimal exercise boundary. Finally, we present several numerical results which illustrate comparison to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Almendral, A., Oosterlee, C.W.: Accurate evaluation of European and American options under the CGMY process. SIAM J. Sci. Comput. 29, 93–117 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amin, K.: Jump diffusion option valuation in discerete time. J. Financ. 48, 1833–1863 (1993)

    Article  Google Scholar 

  3. Andersen, L., Andreasen, J.: Jump-diffusion processes: volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4, 231–262 (2000)

    Article  MATH  Google Scholar 

  4. Ball, C., Torous, W.: On jumps in common stock prices and their impact on call option pricing. J. Financ. 40, 155–173 (1985)

    Article  Google Scholar 

  5. Ballestra, L.V., Cecere, L.: A numerical method to estimate the parameters of the CEV model implied by American option prices: evidence from NYSE. Chaos Solitons Fract. 88, 100–106 (2016)

  6. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–659 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 305–332 (2002)

    Article  Google Scholar 

  8. Chockalingam, A., Muthuraman, K.: Pricing American options when asset prices jump. Oper. Res. Lett. 38, 82–86 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cont, R., Voltchkova, E.: A finite difference scheme for option pricing in jump diffusion and exponential Levy models. SIAM J. Numer. Anal. 43, 1596–1626 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Deng, G.: Pricing American put option on zero-coupon bond in a jump-extended CIR model. Commun. Nonlinear Sci. Numer. Simul. 22, 186–196 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  11. d’Halluin, Y., Forsyth, P.A., Labahn, G.: A penalty method for American options with jump diffusion processes. Numer. Math. 97, 321–352 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gukhal, C.R.: Analytical valuation of American options on jump-diffusion processes. Math. Financ. 11, 97–115 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jarrow, R.A., Rosenfeld, E.: Jump risks and the intertemporal capital asset pricing model. J. Bus. 57, 337–351 (1984)

    Article  Google Scholar 

  14. Jorion, P.: On jump processes in the foreign exchange and stock markets. Rev. Financ. Study 1, 427–455 (1998)

    Article  Google Scholar 

  15. Kim, B.J., Ahn, C., Choe, H.J.: Direct computation for American put option and free boundary using finite difference method. Jpn J. Ind. Appl. Math. 30, 21–37 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kou, S.G.: A jump-diffusion model for option pricing. Manag. Sci. 48, 1086–1101 (2002)

    Article  MATH  Google Scholar 

  17. Kou, S.G., Petrella, G., Wang, H.: Pricing path-dependent options with jump risk via Laplace transforms. Kyoto Econ. Rev. 74, 1–23 (2005)

    Google Scholar 

  18. Kou, S.G., Wang, H.: Option pricing under a double exponential jump diffusion model. Manag. Sci. 50, 1178–1192 (2004)

    Article  Google Scholar 

  19. Merton, R.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4, 141–183 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  20. Merton, R.: Option pricing when the underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)

    Article  MATH  Google Scholar 

  21. Simonato, J.G.: Computing American option prices in the lognormal jump-diffusion framework with a Markov chain. Financ. Res. Lett. 8, 220–226 (2011)

    Article  Google Scholar 

  22. Zhang, X.L.: Numerical analysis of American option pricing in a jump-diffusion model. Math. Oper. Res. 22, 668–690 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the research grant of the Kongju National University in 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ki Ma.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B.J., Ma, YK. & Choe, H.J. Optimal exercise boundary via intermediate function with jump risk. Japan J. Indust. Appl. Math. 34, 779–792 (2017). https://doi.org/10.1007/s13160-017-0261-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-017-0261-0

Keywords

Mathematics Subject Classification

Navigation