Skip to main content
Log in

Topology optimization method for interior flow based on transient information of the lattice Boltzmann method with a level-set function

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We propose a topology optimization method for a flow field using transient information. The optimization algorithm of many conventional methods use the fully converged information of a flow field. In contrast, our approach uses the transient information of an unsteady flow field and update the design domain while solving the unsteady flow field, thereby greatly reducing the computational cost. The fluid and solid regions are clearly distinguished by a level-set function. Consequently, the boundary is concretely represented, and precise boundary conditions are applied on the wall boundary. The lattice Boltzmann method is employed as a fluid computation method. To implement the non-slip boundary conditions at the fluid-solid boundary, we apply bounce-back conditions. We update the domain according to a sensitivity analysis. A sensitivity is formulated based on the lattice Boltzmann equations without adjoint equations for self-adjoint flow. We approximately use the sensitivity for non-self-adjoint equations, i.e. lattice Boltzmann equations, and discuss the optimality and limitations. The approximated sensitivity also considers the bounce-back boundary conditions at the wall separating the fluid and solid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aage, N., Poulsen, T.H., Gersborg-Hansen, A., Sigmund, O.: Topology optimization of large scale Stokes flow problems. Struct. Multidiscip. Optim. 35, 175–180 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire, G., Jouve, F., Toader, A.-M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreasen, C.S., Sigmund, O.: Topology optimization of fluid-structure-interaction problemsin poroelasticity. Comput. Methods Appl. Mech. Eng. 258, 55–62 (2013)

    Article  MATH  Google Scholar 

  4. Ayachit, U.: The ParaView Guide: A Parallel Visualization Application. Kitware Incorporated, USA (2015)

    Google Scholar 

  5. Bajaj, N., Subbarayan, G., Garimella, S.V.: Topological design of channels for squeeze flow optimization of thermal interface materials. Int. J. Heat Mass Transf. 55, 3560–3575 (2012)

    Article  Google Scholar 

  6. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhatnager, P., Gross, E., Krook, M.: A model for collision processes in gases, I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  8. Borrval, T., Peterson, J.: Topology optimization of fluids in Stokes flow. Int. J. Numer. Methods Fluids 41, 77–107 (2003)

    Article  MathSciNet  Google Scholar 

  9. Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13, 3452–3459 (2001)

    Article  MATH  Google Scholar 

  10. Brandenburg, C., Lindemann, F., Ulbrich, M., Ulbrich, S.: A continuous adjoint approach to shape optimization for Navier–Stokes flow. In: Künisch, K., Sprekels, J., Leugering, G., Tröltzsch, F. (Eds) Optimal Control of Coupled Systems of Partial Differential Equations, vol. 158 of International Series of Numerical Mathematics, pp. 35–56 . Birkhäuser, Basel (2009)

  11. Challis, V.J., Guest, J.K.: Level set topology optimization of fluids in Stokes flow. Int. J. Numer. Methods Eng. 79, 1284–1308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deng, Y., Liu, Z., Wu, Y.: Topology optimization of steady and unsteady incompressible Navier–Stokes flows driven by body forces. Struct. Multidiscip. Optim. 47, 555–570 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deng, Y., Liu, Z., Zhang, P., Liu, Y., Wu, Y.: Topology optimization of unsteady incompressible Navier–Stokes flows. J. Comput. Phys. 230, 6688–6708 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. A 360, 437–451 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. d’Humis̀eres, D., Lallemand, P.: Numerical simulations of hydrodynamics with lattice gas automata in two dimensions. Complex Syst 1, 599–632 (1987)

  16. Duan, X.-B., Ma, Y.-C., Zhang, R.: Optimal shape control of fluid flow using variational level set method. Phys. Lett. A 372, 1374–1379 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Geller, S., Krafczyk, M., Tölke, J., Turek, S., Hron, J.: Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows. Comput. Fluids 35, 888–897 (2006)

    Article  MATH  Google Scholar 

  18. Gersborg-Hansen, A., Sigmund, O., Haber, R.: Topology optimization of channel flow problem. Struct. Multidiscip. Optim. 30, 181–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guest, J.K., Précost, J.H.: Topology optimization of creeping fluid flows using a Darcy-Stokes finite element. Int. J. Numer. Methods Eng. 66, 461–484 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ho, C.-F., Chang, C., Lin, K.-H., Lin, C.-A.: Consistent boundary conditions for 2D and 3D lattice Boltzmann simulations. Comput. Model. Eng. Sci. 44, 137–155 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Kontoleontos, E., Papoutisis-Kiachagias, E., Zymaris, A., Papadinitriou, D., Giannakoglou, K.: Adjoint-based constrained topology optimization for viscous flows, including heat transfer. Eng. Optim. 45, 941–961 (2013)

    Article  MathSciNet  Google Scholar 

  22. Krafczyk, M., Tølke, J., Rank, E., Schulz, M.: Two-dimensional simulation of fluid-structure interaction using lattice-Boltzmann methods. Comput. Struct. 79, 2031–2037 (2001)

    Article  Google Scholar 

  23. Krause, M., Thater, G., Heuveline, V.: Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods. Comput. Math. Appl. 65, 945–960 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kreissl, S., Maute, K.: Levelset based fluid topology optimization using the extended finite element method. Struct. Multidiscip. Optim. 46, 311–326 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kreissl, S., Pingen, G., Evgrafov, A., Maute, K.: Topology optimization of flexible micro-fluidic devices. Struct. Multidiscip. Optim. 42, 495–516 (2010)

    Article  Google Scholar 

  26. Kreissl, S., Pingen, G., Maute, K.: An explicit level set approach for generalized shape optimization of fluids with the lattice Boltzmann method. Int. J. Numer. Methods Eng. 65, 496–519 (2011)

    Article  MATH  Google Scholar 

  27. Kreissl, S., Pingen, G., Maute, K.: Topology optimization for unsteady flow. Int. J. Numer. Methods Eng. 87, 1229–1253 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 6546–6562 (2000)

    Article  MathSciNet  Google Scholar 

  29. Maute, K., Allen, M.: Conceptual design of aeroelastic structures by topology optimization. Struct. Multidiscip. Optim. 27, 27–42 (2004)

    Article  Google Scholar 

  30. McNamara, G.R., Zanetti, G.: Use of Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61, 2332–2335 (1988)

    Article  Google Scholar 

  31. Moos, O., Klimetzek, F., Rossmann, R.: Bionic optimization of air-guiding system. In: Proceedings of SAE 2004 World Congress and Exhibition, 2004-01-1377, pp. 95–100 (2004)

  32. Özkaya, E., Gauger, N.: Single-step one-shot aerodynamic shape optimization. In: Kunisch, K., Sprekels, J., Leugering, G., Troltzsch, F. (Eds.) Optimal control of coupled systems of partial differential equations, Vol. 158 of International series of numerical mathematics, pp. 191–204. Birkhauser, Basel (2009)

  33. Pingen, G., Evgrafov, A., Maute, K.: Topology optimization of flow domains using the lattice Boltzmann method. Struct. Multidiscip. Optim. 34, 507–524 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pingen, G., Maute, K.: Optimal design for non-Newtonian flows using a topology optimization approach. Comput. Math. Appl. 59, 2340–2350 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pingen, G., Waidmann, M., Evgrafov, A., Maute, K.: Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization. Comput. Fluids 38, 910–923 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pingen, G., Waidmann, M., Evgrafov, A., Maute, K.: A parametric level-set approach for topology optimization of flow domains. Struct. Multidiscip. Optim. 41, 117–131 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pironneau, O.: On optimum profiles in Stokes flow. J. Fluid Mech. 59, 117–128 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  38. Steven, G., Li, Q., Xie, Y.: Evolutionary topology and shape design for general physical field problems. Comput. Mech. 26, 129–139 (2000)

    Article  MATH  Google Scholar 

  39. Succi, S.: The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  40. Vincente, W., Picelli, R., Pavanello, R., Xie, Y.: Topology optimization of frequency responses of fluid-structure interaction system. Finite Elements Anal. Des. 98, 1–13 (2015)

    Article  Google Scholar 

  41. Yaji, K., Yamada, T., Kubo, S., Izui, K., Nishiwaki, S.: A topology optimization method for a coupled thermal-fluid problem using level set boundary expressions. Int. J. Heat Mass Transf. 81, 878–888 (2015)

    Article  Google Scholar 

  42. Yaji, K., Yamada, T., Yoshino, M., Matsumoto, T., Izui, K., Nishiwaki, S.: Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions. J. Comput. Phys. 274, 158–181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yamada, T., Izui, K., Nishiwaki, S., Takezawa, A.: A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput. Methods Appl. Mech. Eng. 199, 2876–2891 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yonekura, K., Kanno, Y.: A flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann method. Struct. Multidiscip. Optim. 51, 159–172 (2015)

    Article  MathSciNet  Google Scholar 

  45. Yonekura, K., Kanno, Y.: Erratum to: A flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann method. Struct. Multidiscip. Optim. 54, 193–195 (2016)

    Article  MathSciNet  Google Scholar 

  46. Zhang, T., Shi, B., Guo, Z., Chai, Z., Lu, J.: General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method. Phys. Rev. E 85, 016701 (2012)

    Article  Google Scholar 

  47. Ziegler, D.P.: Boundary conditions for lattice Bolzmann simulations. J. Stat. Phys. 71, 1171–1177 (1993)

    Article  MATH  Google Scholar 

  48. Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. J. Phys. Fluids 9, 1591–1598 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Yonekura.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yonekura, K., Kanno, Y. Topology optimization method for interior flow based on transient information of the lattice Boltzmann method with a level-set function. Japan J. Indust. Appl. Math. 34, 611–632 (2017). https://doi.org/10.1007/s13160-017-0257-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-017-0257-9

Keywords

Mathematics Subject Classification

Navigation