Skip to main content
Log in

Steady periodic rotational gravity waves with negative surface tension

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Consideration in this paper is the two-dimensional steady periodic rotational gravity waves with negative surface tension. Local curves of small amplitude solutions of the resulting problem are obtained by using the Crandall–Rabinowitz local bifurcation theory. By means of the global bifurcation theory combined with the Schauder theory of elliptic equations with the Venttsel boundary conditions, the curves of small amplitude solutions is extended to the global continuum of solutions. Furthermore, it is shown that those waves are necessarily symmetric about the crest under the assumption that their surface profiles are monotonic between troughs and crests and locally strictly monotonic near the troughs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berestycki, H., Nirenberg, L.: Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations. J. Geom. Phys. 5, 237–275 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Constantin, A.: Nonliear Water Waves with Applications to Wave-Current Interactions and Tsunamis, volume 81 of CBMS-NSF Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  3. Constantin, A.: On equatorial wind waves. Differ. Integr. Equ. 26, 237–252 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Constantin, A., Varvaruca, E.: Global bifurcation of steady gravity water waves with critical layers. Arch. Ration. Mech. Anal. 199, 33–67 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Constantin, A., Ehrnström, M., Wahlén, E.: Symmetry of steady periodic gravity water waves with vorticity. Duke Math. J. 140(3), 591–603 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin, A., Escher, J.: Symmetry of steady periodic surface water waves with vorticity. J. Fluid Mech. 498, 171–181 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantin, A., Escher, J.: Symmetry of steady deep-water waves with vorticity. Eur. J. Appl. Math. 15, 755–768 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Constantin, A., Strauss, W.: Exact steady periodic water waves with vorticity. Commun. Pure Appl. Math. 57, 481–527 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantin, A., Strauss, W., Varvaruca, E.: Global bifurcation of steady gravity water waves with critical layers (2014). arXiv:1407.0092 (preprint)

  10. Crandall, M., Rabinowitz, P.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  11. Craig, W., Sternberg, P.: Symmetry of solitary waves. Commun. Partial Differ. Equ. 13, 603–633 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  13. Ehrnstoröm, M.: Deep-water waves with vorticity: symmetry and rotational behaviour. Discrete Contin. Dyn. Syst. 19, 483–491 (2007)

    Article  MathSciNet  Google Scholar 

  14. Fraenkl, L.E.: Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  15. Garabedian, P.: Surface waves of finite depth. J. Anal. Math. 14, 161–169 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Henry, D., Matioc, A.-V.: On the symmetry of steady equatorial wind waves. Nonlinear Anal. Real World Appl. 18, 50–56 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Henry, D., Matioc, A.-V.: On the existence of equatorial wind waves. Nonlinear Anal. 101, 113–123 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Henry, D., Matioc, A.-V.: Global bifurcation of capillary-gravity stratified water waves. Proc. R. Soc. Edinb. Sect. A 144, 775–786 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Henry, D., Matioc, A.-V.: On the existence of steady periodic capillary-gravity stratified water waves. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12, 955–974 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Hur, V.M.: Symmetry of solitary water waves with vorticity. Math. Res. Lett. 15, 491–509 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hur, V.M.: Symmetry of steady periodic water waves with vorticity. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365, 2203–2214 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Luo, Y., Trudinger, N.: Linear second order elliptic equations with Venttsel boundary conditions. Proc. R. Soc. Edinb. Sect. A 118, 193–207 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Martin, C.-I.: Equatorial wind waves with capillary effects and stagnation points. Nonlinear Anal. 96, 1–17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Matioc, A.-V., Matioc, B.-V.: Regularity and symmetry properties of rotational solitary water waves. J. Evol. Equ. 12, 481–494 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Matioc, A.-V., Matioc, B.-V.: On the symmetry of periodic gravity water waves with vorticity. Differ. Integr. Equ. 26, 129–140 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Okamoto, H., Shōji, M.: Two-dimensional, periodic, capillary-gravity waves with negative surface tension. In: Mielke, A., Kirchässner, K. (eds.) Structure and Dynamics of Nonlinear Waves in Fluids, pp. 363–369. World Scientific Publishing, River Edge (1995)

  28. Okamoto, H., Shōji, M.: The Mathematical Theory of Permanent Progressive Water Waves. World Scientific Publishing, River Edge (2001)

    Book  MATH  Google Scholar 

  29. Prandtl, L., Tietjens, O.G.: Fundamentals of Hydro- and Aerodynamics. Dover Publications, Mineola (1957)

    MATH  Google Scholar 

  30. Serrin, J.: A symmetry property in potential theory. Arch. Ration. Mech. Anal. 43, 304–318 (1971)

    Article  MATH  Google Scholar 

  31. Toland, J.F.: On the symmetry theory for Stokes waves of finite and infinite depth, In: Iooss, G., Guès, O., Nouri, A. (eds.) Trends in Applications of Mathematics to Mechanics (Nice, 1998), pp. 207–217. Chapman & Hall/CRC, Boca Raton, (2000)

  32. Wahlén, E.: Steady periodic capillary-gravity waves with vorticity. SIAM J. Math. Anal. 38, 921–943 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wahlén, E.: Steady periodic capillary waves with vorticity. Ark. Mat. 44, 367–387 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wahlén, E.: On some nonlinear aspects of wave motion. PhD thesis, Lund University (2008)

  35. Walsh, S.: Some criteria for the symmetry of stratified water waves. Wave Motion 46, 350–362 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Walsh, S.: Steady stratified periodic gravity waves with surface tension I: local bifurcation. Discrete Contin. Dyn. Syst. 34, 3241–3285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Walsh, S.: Steady stratified periodic gravity waves with surface tension II: global bifurcation. Discrete Contin. Dyn. Syst. 34, 3287–3315 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Gao is partially supported by the NSF-China Grant-11171158, National Basic Research Program of China (973 Program)-2013CB 834100, PAPD of Jiangsu Higher Education Institutions, and Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application. The authors are grateful to Ming Chen and Samuel Walsh for their valuable suggestions during preparation of the manuscript. The work of Fan is supported by Natural Science Foundation of Henan Normal University, Grant No. 2016QK03, and the Startup Foundation for Introducing Talent of Henan Normal University, Grant No. qd16150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Gao.

Appendix

Appendix

For the sake of completeness, we present the maximum principles suitable for our setting in this section.

Theorem 5.1

[14] Let \(\Omega \subset \mathbb {R}^{2}\) be a rectangle, \(w \in C^{2} (\overline{\Omega })\), and suppose that \( \mathcal {L}w =0\) for some uniformly elliptic operator \(\mathcal {L}=\sum _{i,j=1}^{2}a_{ij}\partial _{ij}+\sum _{i=1}^{2}b_i\partial _i\) with continuous coefficients in \(\overline{\Omega }\). Then the following statements hold:

(i) [The maximum principle] If \(min_{\overline{\Omega }}w\) or \(max_{\overline{\Omega }}w\) is attained in the interior of \(\Omega \), then w is a constant in \(\overline{\Omega }\).

(ii) [The Hopf boundary-point lemma] Let A be a point on the smooth part of the boundary \(\partial \Omega \) such that \( w(A)< w(X)\) (or \( w(A)> w(X)\) ) for all \(X \in \Omega \). Then the outer normal derivative of w at A is strictly negative (positive).

(iii) [The Serrin edge point lemma] Let \(\Theta _0\) be a corner point of \(\partial \Omega \) such that \(w(\Theta _0)>w(\Theta )\) (or \(w(\Theta _0)<w(\Theta )\)) for all \(\Theta \in \Omega \). If \(a_{11}(\Theta _0)-0\), and \(\tau \) is a unit vector outward from \(\Omega \) at \(\Theta _0\), then either the first or the second derivative of w in the direction of \(\tau \) is strictly positive (negative).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Gao, H. Steady periodic rotational gravity waves with negative surface tension. Japan J. Indust. Appl. Math. 34, 531–554 (2017). https://doi.org/10.1007/s13160-017-0256-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-017-0256-x

Keywords

Mathematics Subject Classification

Navigation