Skip to main content
Log in

Shape optimization of an electrostatic capacitive sensor

  • Original Paper
  • Area 3
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper describes the shape optimization of an electrostatic capacitive sensor used to detect fingers. We consider two state determination problems. The first is a basic electrostatic field problem consisting of sensing electrodes, an earth electrode, and air. The second is an electrostatic field problem in which fingers are added to the basic electrostatic field problem. An objective cost function is defined using the negative-signed squared \(H^{1}\)-norm of the difference between the solutions of the two state determination problems. The volume of the sensing electrode is used as the cost function. Using the solutions of the two state determination problems and the two adjoint problems, we present a method for evaluating the shape derivative of the objective cost function. To solve the shape optimization problem and minimize the negative-signed difference norm under the volume constraint, we use an iterative algorithm based on the \(H^{1}\) gradient method. An algorithm for the shape optimization problem is developed to solve the boundary value problems. Numerical examples show that reasonable shapes are obtained using the present approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Azegami, H.: A solution to domain optimization problems. Trans. Jpn. Soc. Mech. Eng. Ser. A 60, 1479–1486 (1994). (In Japanese)

    Article  Google Scholar 

  2. Azegami, H.: Regularized solution to shape optimization problem (in Japanese). Trans. JSIAM 24(2), 83–138 (2014)

    Google Scholar 

  3. Azegami, H., Fukumoto, S., Aoyama, T.: Shape optimization of continua using nurbs as basis functions. Struct. Multidiscip. Optim. 47(2), 247–258 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azegami, H., Kaizu, S., Takeuchi, K.: Regular solution to topology optimization problems of continua. JSIAM Lett. 3, 1–4 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Azegami, H., Ohtsuka, K., Kimura, M.: Shape derivative of cost function for singular point: evaluation by the generalized j integral. JSIAM Lett. 6, 29–32 (2014). doi:10.14495/jsiaml.6.29

    Article  MathSciNet  Google Scholar 

  6. Azegami, H., Takeuchi, K.: A smoothing method for shape optimization: traction method using the Robin condition. Int. J. Comput. Methods 3(1), 21–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Azegami, H., Zhou, L., Umemura, K., Kondo, N.: Shape optimization for a link mechanism. Struct. Multidiscip. Optim. (2013). doi:10.1007/s00158-013-0886-9

    MathSciNet  MATH  Google Scholar 

  8. Crescini, D., Ferrari, V., Marioli, D., Taroni, A.: A thick-film capacitive pressure sensor with improved linearity due to electrode-shaping and frequency conversion. Meas. Sci. Technol. 8(1), 71 (1997). http://stacks.iop.org/0957-0233/8/i=1/a=010

  9. Davison, B.: Techniques for robust touch sensing design. Application Note 1334, Microchip Technology Inc. (2010). http://ww1.microchip.com/downloads/en/AppNotes/00001334B.pdf

  10. Du, L., Kwon, G., Arai, F., Fukuda, T., Itoigawa, K., Tukahara, Y.: Structure design of micro touch sensor array. Sens. Actuators A Phys. 107(1), 7–13 (2003). doi:10.1016/S0924-4247(03)00105-5. http://www.sciencedirect.com/science/article/pii/S0924424703001055

  11. Kim, Y.S., Byun, J.K., Park, I.H.: A level set method for shape optimization of electromagnetic systems. Magn. IEEE Tran 45(3), 1466–1469 (2009). doi:10.1109/TMAG.2009.2012681

    Article  Google Scholar 

  12. Kimura, M.: Shape derivative of minimum potential energy: abstract theory and applications. Jindřich Nečas Center for Mathematical Modeling Lecture notes Volume IV, Topics in Mathematical Modeling, pp. 1–38 (2008)

  13. Voorthuyzen, J.A., Sprenkels, A.J., van der Donk, A.G.H., Scheeper, P.R., Bergveld, P.: Optimization of capactive microphone and pressure sensor performance by capacitor–electrode shaping. Sens. Actuators A 25–27, 331–336 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Satake.

Appendix A: Formula of shape derivative

Appendix A: Formula of shape derivative

In Sect. 6, the following formula is used [2, p. 96 Proposition 4.4].

Proposition 1

(Shape derivative of domain integral) Let \(\varvec{\phi } \in \mathcal {D}\), \(u \in \mathcal {U} = C^1 \left( \mathcal {D} ; H^1 \left( \mathbb {R}^d ; \mathbb {R} \right) \right) \), \(\varvec{\nabla } u \in \mathcal {V} = C^1 \left( \mathcal {D} ; L^2 \left( \mathbb {R}^d ; \mathbb {R}^d \right) \right) \), and \(h \left( u, \varvec{\nabla } u \right) \in C^1 \left( \mathcal {U} \times \mathcal {V} ; L^2 \left( \mathbb {R}^d ; \mathbb {R} \right) \right) \). Writing \(\varvec{z} = \varvec{x} + \varvec{\varphi } \left( \varvec{x} \right) \), let

$$\begin{aligned} f \left( \varvec{\phi } + \varvec{\varphi }, u \left( \varvec{\phi } + \varvec{\varphi } \right) , \varvec{\nabla }_z u \left( \varvec{\phi } + \varvec{\varphi } \right) \right) = \int _{\varOmega \left( \varvec{\phi } + \varvec{\varphi } \right) } h \left( u \left( \varvec{\phi } + \varvec{\varphi } \right) , \varvec{\nabla }_z u \left( \varvec{\phi } + \varvec{\varphi } \right) \right) \mathrm {d}z \end{aligned}$$

for an arbitrary \(\varvec{\varphi } \in {\mathcal {D}}\). Then, the shape derivative (Fréchet derivative with respect to domain variation) of f is given by

$$\begin{aligned} f^\prime \left( \varvec{\phi }, u \left( \varvec{\phi } \right) , \varvec{\nabla } u \left( \varvec{\phi } \right) \right) \left[ \varvec{\varphi } \right]&= \int _{\varOmega \left( \varvec{\phi } \right) } \bigl \{ h_u \left( u \left( \varvec{\phi } \right) , \varvec{\nabla } u \left( \varvec{\phi } \right) \right) \left[ u^\prime \left( \varvec{\phi } \right) \left[ \varvec{\varphi } \right] \right] \nonumber \\&\quad +\;h_{\varvec{\nabla } u} \left( u \left( \varvec{\phi } \right) , \varvec{\nabla } u \left( \varvec{\phi } \right) \right) \left[ \varvec{\nabla } u^\prime \left( \varvec{\phi } \right) \left[ \varvec{\varphi } \right] - \varvec{\nabla } \varvec{\varphi }^\mathrm {T} \varvec{\nabla } u \left( \varvec{\phi } \right) \right] \nonumber \\&\quad +\;h \left( u \left( \varvec{\phi } \right) , \varvec{\nabla } u \left( \varvec{\phi } \right) \right) \varvec{\nabla } \cdot \varvec{\varphi } \bigr \} \mathrm {d}x, \end{aligned}$$
(A.1)

where \(u^\prime \left( \varvec{\phi } \right) \left[ \varvec{\varphi } \right] \) is the shape derivative of \(u \left( \varvec{\phi } \right) \) with respect to \(\varvec{\varphi } \in {\mathcal {D}}\).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satake, M., Maeda, N., Fukui, S. et al. Shape optimization of an electrostatic capacitive sensor. Japan J. Indust. Appl. Math. 33, 599–619 (2016). https://doi.org/10.1007/s13160-016-0234-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-016-0234-8

Keywords

Mathematics Subject Classification

Navigation