Skip to main content
Log in

An optimal three-point eighth-order iterative method without memory for solving nonlinear equations with its dynamics

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We present a three-point iterative method without memory for solving nonlinear equations in one variable. The proposed method provides convergence order eight with four function evaluations per iteration. Hence, it possesses a very high computational efficiency and supports Kung–Traub’s conjecture. The construction, the convergence analysis, and the numerical implementation of the method will be presented. Using several test problems, the proposed method will be compared with existing methods of convergence order eight concerning accuracy and basins of attraction. Furthermore, some measures are used to judge methods with respect to their performance in finding the basins of attraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amat, S., Busquier, S., Magreñán, Á.A.: Reducing chaos and bifurcations in Newton-type methods. Abstr. Appl. Anal. 2013, Art. ID 726701 (2013)

  2. Babajee, D.K.R., Cordero, A., Soleymani, F., Torregrosa, J.R.: On improved three-step schemes with high efficiency index and their dynamics. Numer. Algorithms 65, 153–169 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bi, W., Ren, H., Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 225, 105–112 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chicharro, F., Cordero, A., Gutiérrez, J.M., Torregrosa, J.R.: Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 7023–7035 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Chun, C., Lee, M.Y.: A new optimal eighth-order family of iterative methods for the solution of nonlinear equations. Appl. Math. Comput. 223, 506–519 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Ezquerro, J.A., Hernández, M.A.: An improvement of the region of accessibility of Chebyshev’s method from Newton’s method. Math. Comp. 78, 1613–1627 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ezquerro, J.A., Hernández, M.A.: An optimization of Chebyshev’s method. J. Complex. 25, 343–361 (2009)

    Article  MATH  Google Scholar 

  9. Ferrara, M., Sharifi, S., Salimi, M.: Computing multiple zeros by using a parameter in Newton–Secant method. SeMA J. (2016). doi:10.1007/s40324-016-0074-0

  10. Grau-Sánchez, M., Noguera, M., Gutiérrez, J.M.: On some computational orders of convergence. Appl. Math. Lett. 23(4), 472–478 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gutiérrez, J.M., Magreñán, Á.A., Varona, J.L.: The “Gauss-Seidelization” of iterative methods for solving nonlinear equations in the complex plane. Appl. Math. Comput. 218, 2467–2479 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Hernández-Paricio, L.J., Marañón-Grandes, M., Rivas-Rodríguez, M.T.: Plotting basins of end points of rational maps with Sage. Tbilisi Math. J. 5(2), 71–99 (2012)

    MATH  Google Scholar 

  13. Jarratt, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434–437 (1966)

    Article  MATH  Google Scholar 

  14. King, R.F.: A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21, 634–651 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lotfi, T., Sharifi, S., Salimi, M., Siegmund, S.: A new class of three-point methods with optimal convergence order eight and its dynamics. Numer. Algorithms 68, 261–288 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Neta, B.: On a family of multipoint methods for nonlinear equations. Int. J. Comput. Math. 9, 353–361 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Neta, B., Chun, C., Scott, M.: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014)

    MathSciNet  Google Scholar 

  19. Ostrowski, A.M.: Solution of Equations and Systems of Equations, 2nd edn. Academic Press, New York (1966)

    MATH  Google Scholar 

  20. Petković, M.S., Neta, B., Petković, L.D., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Elsevier/Academic Press, Amsterdam (2013)

    MATH  Google Scholar 

  21. Prashanth, M., Gupta, D.K.: Semilocal convergence for Super-Halley’s method under \(\omega \)-differentiability condition. Jpn. J. Ind. Appl. Math. 32, 77–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Salimi, M., Lotfi, T., Sharifi, S., Siegmund, S.: Optimal Newton–Secant like methods without memory for solving nonlinear equations with its dynamics. Int. J. Comput. Math. (2016). doi:10.1080/00207160.2016.1227800

  23. Sharifi, S., Ferrara, M., Salimi, M., Siegmund, S.: New modification of Maheshwari method with optimal eighth order of convergence for solving nonlinear equations. Open Math. (formerly Cent. Eur. J. Math.) 14, 443–451 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Sharifi, S., Salimi, M., Siegmund, S., Lotfi, T.: A new class of optimal four-point methods with convergence order \(16\) for solving nonlinear equations. Math. Comput. Simul. 119, 69–90 (2016)

    Article  MathSciNet  Google Scholar 

  25. Sharifi, S., Siegmund, S., Salimi, M.: Solving nonlinear equations by a derivative-free form of the King’s family with memory. Calcolo 53, 201–215 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sharma, J.R., Sharma, R.: A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algorithms 54, 445–458 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stewart, B.D.: Attractor Basins of Various Root-Finding Methods. M.S. thesis, Naval Postgraduate School, Monterey, CA (2001)

  28. Thukral, R., Petković, M.S.: A family of three-point methods of optimal order for solving nonlinear equations. J. Comput. Appl. Math. 233, 2278–2284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  30. Varona, J.L.: Graphic and numerical comparison between iterative methods. Math. Intell. 24(1), 37–46 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, X., Liu, L.: New eighth-order iterative methods for solving nonlinear equations. J. Comput. Appl. Math. 234, 1611–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87–93 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of the fourth author is supported by Grant MTM2015-65888-C4-4-P (MINECO/FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Salimi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthies, G., Salimi, M., Sharifi, S. et al. An optimal three-point eighth-order iterative method without memory for solving nonlinear equations with its dynamics. Japan J. Indust. Appl. Math. 33, 751–766 (2016). https://doi.org/10.1007/s13160-016-0229-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-016-0229-5

Keywords

Mathematics Subject Classification

Navigation