Advertisement

Wave-type threshold dynamics and the hyperbolic mean curvature flow

  • Elliott GinderEmail author
  • Karel Svadlenka
Original Paper Area 1
  • 122 Downloads

Abstract

We introduce a method for computing interfacial motions governed by curvature dependent acceleration. Our method is a thresholding algorithm of the MBO-type which, instead of utilizing a diffusion process, thresholds evolution by the wave equation to obtain the desired interfacial dynamics. We also develop the numerical method and present results of its application, including investigations of volume preserving and multiphase motions.

Keywords

Hyperbolic curvature flow Interfacial dynamics Approximation method 

Mathematics Subject Classification

35L 14J70 53C44 74S 

Notes

Acknowledgments

This work was supported by JSPS Grant numbers 25800087, 26870224, and by JSPS A3 Foresight Program “Computational Applied Mathematics 2014–2019”.

References

  1. 1.
    Bonafini, M.: A BMO-type scheme for the relativistic hyperbolic mean curvature flow. Master thesis, Verona University (2015)Google Scholar
  2. 2.
    Essedoglu, S., Ruuth, S., Tsai, R.: Diffusion generated motion using signed distance functions. J. Comput. Phys. 229(4), 1017–1042 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ginder, E., Švadlenka, K.: A variational approach to a constrained hyperbolic free boundary problem. Nonlinear Anal. 71, 1527–1537 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ginder, E., Švadlenka, K.: The discrete Morse flow for volume-controlled membrane motions. Adv. Math. Sci. Appl. 22(1), 205–223 (2012)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ginder, E.: A variational approach to volume-controlled evolutionary equations. Dissertation, Kanazawa University (2012)Google Scholar
  6. 6.
    Gurtin, M.E., Podio-Guidugli, P.: A hyperbolic theory for the evolution of plane curves. SIAM J. Math. Anal. 22, 575–586 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    He, C., Kong, D., Liu, K.: Hyperbolic mean curvature flow. J. Differ. Equ. 246, 390–473 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kang, M.: A level set approach for the motion of soap bubbles with curvature dependent velocity or acceleration. Dissertation, University of California Los Angeles (1996)Google Scholar
  9. 9.
    Kikuchi, K., Omata, S.: A free boundary problem for a one dimensional hyperbolic equation. Adv. Math. Sci. Appl. 9, 775–786 (1999)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kong, D., Liu, K., Wang, Z.: Hyperbolic mean curvature flow: evolution of plane curves. Acta Math. Sci. 29B(3), 493–514 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kong, D., Wang, Z.: Formation of singularities in the motion of plane curves under hyperbolic mean curvature flow. J. Differ. Equ. 247, 1694–1719 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    LeFLoch, P.G., Smoczyk, K.: The hyperbolic mean curvature flow. J. Math. Pures Appl. 90, 591–614 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple junctions: a level set approach. J. Comp. Phys. 112, 334–363 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mohammad, R.Z., Švadlenka, K.: Multiphase volume-preserving interface motions via localized signed distance vector scheme. Discrete Cont. Dyn. Syst. Ser. S 8(5), 969–988 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rotstein, H.G., Brandon, S., Novick-Cohen, A.: Hyperbolic flow by mean curvature. J. Cryst. Growth 198(199), 1256–1261 (1999)CrossRefGoogle Scholar
  16. 16.
    Švadlenka, K., Ginder, E., Omata, S.: A variational method for multiphase volume-preserving interface motions. J. Comput. Appl. Math. 257, 157–179 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Švadlenka, K., Omata, S.: Mathematical modelling of surface vibration with volume constraint and its analysis. Nonlinear Anal. 69, 3202–3212 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tachikawa, A.: A variational approach to constructing weak solutions of semilinear hyperbolic systems. Adv. Math. Sci. Appl. 4, 93–103 (1994)MathSciNetzbMATHGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan 2016

Authors and Affiliations

  1. 1.Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan
  2. 2.Department of MathematicsKyoto UniversityKyotoJapan

Personalised recommendations