Skip to main content
Log in

An optimal investment, consumption-leisure and voluntary retirement choice problem with subsistence consumption constraints

  • Original Paper
  • Area 4
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We study an optimal investment, consumption-leisure and voluntary retirement problem for an agent whose consumption rate process is subject to a subsistence constraint before retirement. We use the dynamic programming method to obtain closed-form solutions for the optimal strategies as well as the value function when the agent’s utility of consumption and leisure is of Cobb–Douglas form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barucci, E., Marazzina, D.: Optimal investment, stochastic labor income and retirement. Appl. Math. Comput. 213, 5588–5604 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Chai, J., Horneff, W., Maurer, R., Mitchell, O.S.: Optimal portfolio choice over the life cycle with flexible work, endogenous retirement, and lifetime payouts. Rev. Financ. 15, 875–907 (2011)

    Article  Google Scholar 

  3. Choi, K.J., Shim, G.: Disutility, optimal retirement, and portfolio selection. Math. Financ. 16, 443–467 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Choi, K.J., Shim, G., Shin, Y.H.: Optimal portfolio, consumption-leisure and retirement choice problem with CES utility. Math. Financ. 18, 445–472 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dybvig, P.H., Liu, H.: Lifetime consumption and investment: retirement and constrained borrowing. J. Econ. Theory 145, 885–907 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dybvig, P.H., Liu, H.: Verification theorems for models of optimal consumption and investment with retirement and constrained borrowing. Math. Oper. Res. 36, 620–635 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Farhi, E., Panageas, S.: Saving and investing for early retirement: a theoretical analysis. J. Financ. Econ. 83, 87–121 (2007)

    Article  Google Scholar 

  8. Gong, N., Li, T.: Role of index bonds in an optimal dynamic asset allocation model with real subsistence consumption. Appl. Math. Comput. 174, 710–731 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Karatzas, I., Lehoczky, J., Sethi, S., Shreve, S.: Explicit solution of a general consumption/investment problem. Math. Oper. Res. 11, 261–294 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Koo, J.L., Ahn, S.R., Koo, B.L., Koo, H.K., Shin, Y.H.: Optimal consumption and portfolio selection with quadratic utility and a subsistence consumption constraint. Stoch. Anal. Appl. 34, 165–177 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koo, J.L., Koo, B.L., Shin, Y.H.: An optimal investment, consumption, leisure, and voluntary retirement problem with Cobb–Douglas utility: Dynamic programming approaches. Appl. Math. Lett. 26, 481–486 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lakner, P., Nygren, L.M.: Portfolio optimization with downside constraints. Math. Financ. 16, 283–299 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lim, B.H., Shin, Y.H., Choi, U.J.: Optimal investment, consumption and retirement choice problem with disutility and subsistence consumption constraints. J. Math. Anal. Appl. 345, 109–122 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51, 247–257 (1969)

    Article  Google Scholar 

  15. Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3, 373–413 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shim, G., Shin, Y.H.: An optimal job, consumption/leisure, and investment policy. Oper. Res. Lett. 42, 145–149 (2014)

    Article  MathSciNet  Google Scholar 

  17. Shin, Y.H.: Voluntary retirement and portfolio selection: dynamic programming approaches. Appl. Math. Lett. 25, 1087–1093 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shin, Y.H., Lim, B.H.: Comparison of optimal portfolios with and without subsistence consumption constraints. Nonlinear Anal. Theory Methods Appl. 74, 50–58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shin, Y.H., Lim, B.H., Choi, U.J.: Optimal consumption and portfolio selection problem with downside consumption constraints. Appl. Math. Comput. 188, 1801–1811 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We appreciate two anonymous referees for helpful comments and valuable suggestions to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Hyun Shin.

Additional information

The corresponding author (Y.H. Shin) gratefully acknowledges the support of Sookmyung Women’s University Research Grants 2014 (1-1403-0108).

Appendices

Appendix 1: Proof of the assertion that \(C_2>0\) in (18) and \(X'(c)>0\) for given X(c) in (22).

With the continuity condition of the value function V(x) at \(\bar{x}\) (32), we obtain an alternative expression of \(D_2\) as follows:

$$\begin{aligned} D_2=\frac{\rho }{r-\frac{1}{2}\theta ^2n_2}\Biggl (1-L^{\frac{\gamma -\gamma _1}{\gamma _1}}\Biggr )\frac{K_2^{\gamma _1 n_2}}{1-\gamma _1}\bar{x}^{\gamma _1 n_2+1}-\frac{r-\frac{1}{2}\theta ^2n_1}{r-\frac{1}{2}\theta ^2n_2}D_1(K_2\bar{x})^{\gamma _1(n_2-n_1)}. \end{aligned}$$

Since \(0<\bar{x}_E<\bar{x}\), we have

$$\begin{aligned} \frac{r-\frac{1}{2}\theta ^2n_2-\frac{\rho }{1-\gamma _1}}{\frac{1}{2}\theta ^2\gamma _1 n_1 (n_2-n_1)}\left( \frac{1}{K_2}-\frac{1}{K_1}\right) =D_1(K_2\bar{x}_E)^{-(\gamma _1n_1+1)}>D_1(K_2\bar{x})^{-(\gamma _1n_1+1)}. \end{aligned}$$
(40)

Obviously, \(\gamma _1n_1>-1\) and \(-\gamma _1(n_2-n_1)>-(\gamma _1n_2+1),\) which is equivalent to the inequality

$$\begin{aligned} \frac{1}{2}\theta ^2\gamma _1\left( -\frac{2\rho }{\theta ^2}\right) (n_2-n_1)>-(\gamma _1n_2+1)\rho . \end{aligned}$$

From (33) and (34), \(\displaystyle {-\frac{2\rho }{\theta ^2}}=(n_1+1)(n_2+1).\) So we have

$$\begin{aligned} \frac{1}{2}\theta ^2\gamma _1(n_1+1)(n_2+1)(n_2-n_1)>-(\gamma _1n_2+1)\rho , \end{aligned}$$

and

$$\begin{aligned} \frac{1}{2}\theta ^2\gamma _1(n_1+1)(n_2-n_1)<-\frac{(\gamma _1n_2+1)}{(n_2+1)}\rho = \left( r-\frac{1}{2}\theta ^2n_2-\frac{\rho }{1-\gamma _1}\right) (1-\gamma _1), \end{aligned}$$

where the relation \(\displaystyle {\frac{r-\frac{1}{2}\theta ^2 n_{1, 2}}{\rho }}=\frac{n_{1, 2}}{n_{1, 2}+1}\) is used to obtain the above equality. Note that \(K_1<K_2\) for \(\gamma _1>1\) and \(K_1>K_2\) for \(0<\gamma _1<1\) from Remark 1. Consequently,

$$\begin{aligned} \frac{n_1+1}{(1-\gamma _1)n_1}\left( \frac{1}{K_2}-\frac{1}{K_1}\right) >\frac{r-\frac{1}{2}\theta ^2n_2-\frac{\rho }{1-\gamma _1}}{\frac{1}{2}\theta ^2\gamma _1 n_1 (n_2-n_1)}\left( \frac{1}{K_2}-\frac{1}{K_1}\right) . \end{aligned}$$
(41)

From (40) and (41), we derive

$$\begin{aligned} \frac{1}{(1-\gamma _1)}\left( \frac{1}{K_2}-\frac{1}{K_1}\right) >\frac{n_1}{n_1+1}D_1(K_2\bar{x})^{-(\gamma _1n_1+1)}=\frac{r-\frac{1}{2}\theta ^2 n_1}{\rho }D_1(K_2\bar{x})^{-(\gamma _1n_1+1)}, \end{aligned}$$

and

$$\begin{aligned} \rho \left( 1-L^{\frac{\gamma -\gamma _1}{\gamma _1}}\right) \frac{\bar{x}}{1-\gamma _1} -\left( r-\frac{1}{2}\theta ^2 n_1\right) D_1(K_2\bar{x})^{-\gamma _1n_1}>0, \end{aligned}$$

which yields that \(D_2>0.\) From (26), we see that

$$\begin{aligned} X'(R)&=-\gamma _1 n_1 D_1 R^{-\gamma _1 n_1-1}-\gamma _1 n_2 D_2 R^{-\gamma _1 n_2-1}+\frac{1}{K_1}\\&={\frac{\frac{\gamma _1 n_1}{r}-\frac{\gamma _1 n_1}{K_1}-\frac{1}{K_1}}{(m_2-1)n_1-1}}-\gamma _1 n_2 D_2 R^{-\gamma _1 n_2-1}>0, \end{aligned}$$

which implies

$$\begin{aligned} \frac{\gamma _1 n_1}{r}-\frac{\gamma _1 n_1}{K_1}-\frac{1}{K_1}=-\frac{\frac{1}{2}\theta ^2n_1^2+\frac{1}{2\gamma _1}n_1\theta ^2}{rK_1}<0. \end{aligned}$$

Therefore we have \(\widetilde{x}>(R-\epsilon )/r\) from the first equality of (29) and \(C_2>0\) by (17). And, for \(c\ge R\),

$$\begin{aligned} X'(c)&=-\gamma _1 n_1 D_1 c^{-\gamma _1 n_1 -1}-\gamma _1 n_2 D_2 c^{-\gamma _1 n_2 -1}+\frac{1}{K_1}\\&\ge -\gamma _1 n_1D_1R^{-\gamma _1 n_1 -1}+\frac{1}{K_1}-\gamma _1 n_2 D_2 c^{-\gamma _1 n_2 -1}\\&=\displaystyle {\frac{\frac{\gamma _1 n_1}{r}-\frac{\gamma _1 n_1}{K_1}-\frac{1}{K_1}}{(m_2-1)n_1-1}}-\gamma _1 n_2 D_2 c^{-\gamma _1 n_2 -1}>0. \end{aligned}$$

\(\square \)

Appendix 2: An extension: pre- and post-retirement subsistence consumption

We consider the situation where there exists a post-retirement subsistence consumption \(\hat{R}\) as well as a pre-retirement subsistence consumption R. The value function of the retiree is then given by

$$\begin{aligned} \varPhi ^{p}(x)\triangleq \max _{(\mathbf{c},{\varvec{\pi }})\in \mathcal {\hat{A}}(x)}\mathbb {E} \left[ L^{\gamma _1-\gamma }\int _0^\infty e^{-\rho t}\frac{c_t^{1-\gamma _1}}{1-\gamma _1}dt\right] , \end{aligned}$$

subject to

$$\begin{aligned} dX_t=\left[ rX_t+\pi _t(\mu -r)-c_t\right] dt+\pi _t \sigma dB_t, \end{aligned}$$

where \(\mathcal {\hat{A}}(x)\) is an admissible set (at initial wealth \(X_0=x>\hat{R}/\epsilon \)), which consists of pairs of consumption/portfolio \((\mathbf{c},{\varvec{\pi }})\) such that \(X_t>\hat{R}/\epsilon \) and \(c_t\ge \hat{R}\) for all \(t\ge 0\). Along similar lines to the proof of Theorem 2 (or see Shim et al. [19]), we obtain

$$\begin{aligned} \varPhi ^{p}(x)/L^{\gamma _1-\gamma }=\left\{ \begin{array}{ll} a\left( x-\frac{\hat{R}}{r}\right) ^{m_2}+\frac{\hat{R}^{1-\gamma _1}}{\rho (1-\gamma _1)},&{}\quad ~\text{ for }~~\hat{R}/r< x<\hat{x} ,\\ \frac{r-\frac{1}{2}\theta ^2 n_1}{\rho } b \zeta ^{-\gamma _1(n_1+1)}+\frac{\zeta ^{1-\gamma _1}}{K_1(1-\gamma _1)},&{}\quad ~\text{ for }~~ x\ge \hat{x}, \end{array} \right. \end{aligned}$$

where

$$\begin{aligned} b=\frac{\left( \frac{m_2-1}{\gamma _1}+1\right) \frac{1}{K_1}-\frac{1}{r}}{(m_2-1)n_1-1}\hat{R}^{\gamma _1 n_1 +1},~\hat{x}=b \hat{R}^{-\gamma _1 n_1}+\frac{\hat{R}}{K_1} \end{aligned}$$

and

$$\begin{aligned} a=\frac{1}{m_2}\left( \hat{x}-\frac{\hat{R}}{r}\right) ^{1-m_2} \hat{R}^{-\gamma _1}. \end{aligned}$$

\(\hat{x}\) is the threshold wealth level corresponding to the subsistence consumption \(\hat{R}\). For \(x\ge \hat{x}\), \(\zeta \) is determined from the following algebraic equation

$$\begin{aligned} x=b \zeta ^{-\gamma _1 n_1}+\frac{\zeta }{K_1}, \end{aligned}$$
(42)

which is the relationship between the optimal consumption rate \(\zeta \) and the wealth level x. The optimal consumption and portfolio pair \((\mathbf{c}^{p,*},{\varvec{\pi }}^{p,*})\) for the retiree is given by

$$\begin{aligned} c_t^{p,*}=\left\{ \begin{array}{ll} \hat{R},&{}\quad ~\text{ for }~~\hat{R}/r< X_t<\hat{x}\\ \zeta _t,&{}\quad ~\text{ for }~~X_t\ge \hat{x} \end{array}\right. \end{aligned}$$

and

$$\begin{aligned} \pi _t^{p,*}=\left\{ \begin{array}{ll} \frac{\theta }{\sigma }\frac{1}{1-m_2}\left( X_t-\frac{\hat{R}}{r}\right) ,&{}\quad ~\text{ for }~~\hat{R}/r< X_t<\hat{x}\\ \frac{\theta }{\sigma \gamma _1}\left( -\gamma _1 n_1 b \zeta _t^{-\gamma _1 n_1}+\frac{\zeta _t}{K_1} \right) ,&{}\quad ~\text{ for }~~ X_t\ge \hat{x}, \end{array}\right. \end{aligned}$$

where \(\zeta _t\) is determined by the following algebraic equation

$$\begin{aligned} X_t=b \zeta _t^{-\gamma _1 n_1}+\frac{\zeta _t}{K_1}. \end{aligned}$$
(43)

Then the agent’s optimization problem can the be written as

$$\begin{aligned} \varPhi (x)\triangleq \max _{(\mathbf{c},{\varvec{\pi }}, \tau )\in {\mathcal {A}}(x)}{\mathbb {E}} \left[ \int _0^\tau e^{-\rho t}\frac{c_t^{1-\gamma _1}}{1-\gamma _1}dt+e^{-\rho \tau }\varPhi ^{p}(X_\tau )\right] , \end{aligned}$$

and the value function \(\varPhi (x)\) can be pursued by similar lines to the proof of Theorem 2.

Theorem 4

$$\begin{aligned} \varPhi (x)=\left\{ \begin{array}{ll} \displaystyle {c_2\left( x-\frac{R}{r}+\frac{\epsilon }{r}\right) ^{m_2}+\frac{R^{1-\gamma _1}}{\rho (1-\gamma _1)}},&{}\quad \text{ for }~~(R-\epsilon )/r< x<\check{x} ,\\ \displaystyle {\frac{r-\frac{1}{2}\theta ^2 n_1}{\rho } d_1 \eta ^{-\gamma _1(n_1+1)}}&{}\\ \quad \displaystyle {+\frac{r-\frac{1}{2}\theta ^2 n_2}{\rho } d_2 \eta ^{-\gamma _1(n_2+1)}+ \frac{\eta ^{1-\gamma _1}}{K_1(1-\gamma _1)}},&{}\quad \text{ for }~~\check{x}\le x<\bar{\check{x}} , \\ \varPhi ^{p}(x),&{}\quad \text{ for }~~\bar{\check{x}}\le x , \end{array} \right. \end{aligned}$$

where

$$\begin{aligned} c_2&=C_2,~d_1=D_1,~\\ d_2&=-(d_1-L^{-n_1(\gamma _1-\gamma )}b)\bar{c}_l^{\gamma _1(n_2-n_1)}+\left( \frac{1}{K_2}-\frac{1}{K_1}\right) \bar{c}_l^{\gamma _1 n_2+1}+\frac{\epsilon }{r}\bar{c}_l^{\gamma _1 n_2}, \end{aligned}$$

and \(\bar{c}_l\) solves the following algebraic equation

$$\begin{aligned}&\frac{1}{2}\theta ^2(n_2-n_1)(d_1-L^{-n_1(\gamma _1-\gamma )}b)\bar{c}_l^{-\gamma _1 n_1}\!+\!\left( r-\frac{1}{2}\theta ^2n_2-\frac{\rho }{1-\gamma _1}\right) \left( \frac{1}{K_2}-\frac{1}{K_1}\right) \bar{c}_l\nonumber \\&\quad +\left( r-\frac{1}{2}\theta ^2n_2\right) \frac{\epsilon }{r}=0. \end{aligned}$$
(44)

Furthermore,

$$\begin{aligned} \check{x}=d_1 R^{-\gamma _1 n_1}+d_2 R^{-\gamma _1 n_2}+\frac{R}{K_1}-\frac{\epsilon }{r},~~ \bar{\check{x}}=d_1 \bar{c}_l^{-\gamma _1 n_1}+d_2 \bar{c}_l^{-\gamma _1 n_2}+\frac{\bar{c}_l}{K_1}-\frac{\epsilon }{r}. \end{aligned}$$

\(\check{x}\) is the threshold wealth level corresponding to the subsistence consumption R and \(\bar{\check{x}}\) is the retirement wealth level. For \(\check{x}\le x<\bar{\check{x}}\), \(\eta \) is determined from the following algebraic equation

$$\begin{aligned} x=d_1 \eta ^{-\gamma _1 n_1}+d_2 \eta ^{-\gamma _1 n_2}+\frac{\eta }{K_1}-\frac{\epsilon }{r}, \end{aligned}$$

which is the relationship between the optimal consumption rate \(\eta \) and the wealth level x.

Proof

Similar arguments to the proof of Theorem 2 lead us to have

$$\begin{aligned} \varPhi (x)=\displaystyle {c_2\left( x-\frac{R}{r}+\frac{\epsilon }{r}\right) ^{m_2}+\frac{R^{1-\gamma _1}}{\rho (1-\gamma _1)}},\quad \text{ for }~~(R-\epsilon )/r< x<\check{x}, \end{aligned}$$

and

$$\begin{aligned} \varPhi (x)= & {} \displaystyle {\frac{r-\frac{1}{2}\theta ^2 n_1}{\rho } d_1 \eta ^{-\gamma _1(n_1+1)}+\frac{r-\frac{1}{2}\theta ^2 n_2}{\rho } d_2 \eta ^{-\gamma _1(n_2+1)}+ \frac{\eta ^{1-\gamma _1}}{K_1(1-\gamma _1)}},~\\ \text{ for }~~\check{x}\le & {} x<\bar{\check{x}}, \end{aligned}$$

where

$$\begin{aligned} x=d_1 \eta ^{-\gamma _1 n_1}+d_2 \eta ^{-\gamma _1 n_2}+\frac{\eta }{K_1}-\frac{\epsilon }{r}, \end{aligned}$$
(45)

for some constants \(c_2\), \(d_1\), and \(d_2.\) Boundary conditions at \(x=\check{x}\) yield \(c_2=C_2\), \(d_1=D_1\), and \(\check{x}=d_1 R^{-\gamma _1 n_1}+d_2 R^{-\gamma _1 n_2}+\frac{R}{K_1}-\frac{\epsilon }{r}.\)

To determine \(d_2\) and \(\bar{\check{x}}\), we use the smooth-pasting condition at \(x=\bar{\check{x}}\). Let us denote \(\check{\tau }^*\triangleq \inf \{t\ge 0: X_t\ge \bar{\check{x}}\}\)\(\bar{c}_l\triangleq c_{\check{\tau }^*-}\), \(\bar{c}_r\triangleq c_{\check{\tau }^*}\). From (42) and (45), we have

$$\begin{aligned} \bar{\check{x}}=d_1 \bar{c}_l^{-\gamma _1 n_1}+d_2 \bar{c}_l^{-\gamma _1 n_2}+\frac{\bar{c}_l}{K_1}-\frac{\epsilon }{r}=b \bar{c}_r^{-\gamma _1 n_1}+\frac{\bar{c}_r}{K_1}, \end{aligned}$$
(46)

the continuity of \(\varPhi (x)\) at \(x=\bar{\check{x}}\) yields

$$\begin{aligned} \varPhi (\bar{\check{x}})&=\displaystyle {\frac{r-\frac{1}{2}\theta ^2 n_1}{\rho } d_1 \bar{c}_l^{-\gamma _1(n_1+1)}+\frac{r-\frac{1}{2}\theta ^2 n_2}{\rho } d_2 \bar{c}_l^{-\gamma _1(n_2+1)}+\frac{\bar{c}_l^{1-\gamma _1}}{K_1(1-\gamma _1)}}\nonumber \\&=L^{\gamma _1-\gamma }\frac{r-\frac{1}{2}\theta ^2 n_1}{\rho } b \bar{c}_r^{-\gamma _1(n_1+1)}+L^{\gamma _1-\gamma }\frac{\bar{c}_r^{1-\gamma _1}}{K_1(1-\gamma _1)}, \end{aligned}$$
(47)

and the continuity of \(\varPhi '(x)\) at \(x=\bar{\check{x}}\) does

$$\begin{aligned} \varPhi '(\bar{\check{x}})=\bar{c}_l^{-\gamma _1}=L^{\gamma _1-\gamma }\bar{c}_r^{-\gamma _1}. \end{aligned}$$
(48)

It follows from the Eqs. (46), (47), and (48) that \(\bar{c}_l\) solves the algebraic equation

$$\begin{aligned}&\frac{1}{2}\theta ^2(n_2-n_1)(d_1-L^{-n_1(\gamma _1-\gamma )}b)\bar{c}_l^{-\gamma _1 n_1}\!+\!\left( r-\frac{1}{2}\theta ^2n_2-\frac{\rho }{1-\gamma _1}\right) \left( \frac{1}{K_2}-\frac{1}{K_1}\right) \bar{c}_l\\&\quad +\left( r-\frac{1}{2}\theta ^2n_2\right) \frac{\epsilon }{r}=0, \end{aligned}$$

and \(d_2\) can be found from (46). \(\Box \)

The following optimal strategies are immediate consequences of the first order conditions (FOCs).

Theorem 5

The optimal strategies \((\mathbf{c}^*,{\varvec{\pi }}^*, \tau ^*)\) for the agent are given by

$$\begin{aligned} c_t^{*}= & {} \left\{ \begin{array}{ll} R,~&{}\quad \text{ for }~~(R-\epsilon )/r< X_t<\check{x} ,\\ \eta _t,~&{}\quad \text{ for }~~\check{x}\le X_t<\bar{\check{x}} , \\ \zeta _t,~&{}\quad \text{ for }~~\bar{\check{x}}\le X_t , \end{array} \right. \\ \pi _t^{*}= & {} \left\{ \begin{array}{ll} \displaystyle {\frac{\theta }{\sigma }\cdot \frac{1}{1-m_2}\left( X_t-\frac{R}{r}+\frac{\epsilon }{r}\right) },~&{}\quad \text{ for }~~(R-\epsilon )/r< X_t<\check{x} ,\\ \displaystyle {\frac{\theta }{\sigma }\left( -n_1d_1\eta _t^{-\gamma _1 n_1}-n_2d_2\eta _t^{-\gamma _1 n_2}+\frac{\eta _t}{\gamma _1 K_1}\right) },~&{}\quad \text{ for }~~\check{x}\le X_t<\bar{\check{x}} , \\ \frac{\theta }{\sigma \gamma _1}\left( -\gamma _1 n_1 b \zeta _t^{-\gamma _1 n_1}+\frac{\zeta _t}{K_1} \right) ,~&{}\quad \text{ for }~~\bar{\check{x}}\le X_t , \end{array} \right. \end{aligned}$$

and

$$\begin{aligned} \tau ^*=\inf \{t\ge 0: X_t\ge \bar{\check{x}}\}, \end{aligned}$$

where \(\eta _t\) and \(\zeta _t\) solves the following algebraic equations

$$\begin{aligned} X_t=d_1 \eta _t^{-\gamma _1 n_1}+d_2 \eta _t^{-\gamma _1 n_2}+ \frac{\xi _t}{K_1}-\frac{\epsilon }{r},~~X_t=b \zeta _t^{-\gamma _1 n_1}+\frac{\zeta _t}{K_1}, \end{aligned}$$

respectively.

Proposition 3

If \(L^{n_1(\gamma _1-\gamma )}<\left( \frac{\hat{R}}{R}\right) ^{\gamma _1n_1+1},\) the algebraic equation (44) has a unique solution and \(\bar{c}_l\) decreases with R, while increases with \(\hat{R}\).

Proof

If we define a function H(x) as follows:

$$\begin{aligned} H(x)\triangleq & {} \frac{1}{2}\theta ^2(n_2-n_1)(d_1-L^{-n_1(\gamma _1-\gamma )}b)\bar{c}_l^{-\gamma _1 n_1}\\&+\left( r-\frac{1}{2}\theta ^2n_2-\frac{\rho }{1-\gamma _1}\right) \left( \frac{1}{K_2}-\frac{1}{K_1}\right) \bar{c}_l\\&+\left( r-\frac{1}{2}\theta ^2n_2\right) \frac{\epsilon }{r}, \end{aligned}$$

we see that H(x) is a strictly decreasing function with \(\displaystyle {\lim _{x \rightarrow 0}H(x)=+\infty }\) and \(\displaystyle {\lim _{x \rightarrow \infty }H(x)=-\infty }\). So, \(H(x)=0\) has a unique solution \(\bar{c}_l>0.\) Taking partial derivatives of (44) with respect to R and \(\hat{R}\) yields

$$\begin{aligned} \frac{\partial \bar{c}_l}{\partial R}<0\quad \text{ and }\quad \frac{\partial \bar{c}_l}{\partial \hat{R}}>0. \end{aligned}$$

\(\square \)

Remark 3

It can be easily shown that \(\bar{\check{x}}\) increases with \(\bar{c}_l\). From Proposition 3, if \(L^{n_1(\gamma _1-\gamma )}<\left( \frac{\hat{R}}{R}\right) ^{\gamma _1n_1+1}\), it follows that \(\bar{\check{x}}\) decreases with R, while increases with \(\hat{R}\). In this case, pre-retirement subsistence consumption R stimulates early retirement but post-retirement subsistence consumption \(\hat{R}\) delays retirement.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HS., Shin, Y.H. An optimal investment, consumption-leisure and voluntary retirement choice problem with subsistence consumption constraints. Japan J. Indust. Appl. Math. 33, 297–320 (2016). https://doi.org/10.1007/s13160-016-0215-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-016-0215-y

Keywords

Mathematics Subject Classification

Navigation