Skip to main content
Log in

Study of a degenerate elliptic equation in an optimal consumption problem under partial information

  • Original Paper
  • Area 4
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider an optimal consumption/investment problem under partial information. By using a known reduction scheme, the problem can be transformed to a standard stochastic control problem. The related Hamilton–Jacobi–Bellman (HJB) equation is, after suitable transformation, a second-order linear degenerate elliptic equation. Although the problem is somewhat simple and classical, and the method of solution is well known, it is not obvious that the related HJB equation has a unique classical solution. Here, we prove the existence, uniqueness, and boundary regularity of the solution to the HJB equation. The main components of the proof are the construction of an appropriate weak solution and the verification of the Hörmander condition. Using the classical solution, we also prove the verification theorem for the original optimal consumption/investment problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering. Springer, New York (2009)

    Book  MATH  Google Scholar 

  2. Björk, T., Davies, M.H.A., Landén, C.: Optimal investment under partial information. Math. Methods Oper. Res. 71, 371–399 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Elliott, R.J., Aggoun, L., Moore, J.B.: Hidden Markov Models: Estimation and Control. Springer, New York (2008)

    Google Scholar 

  4. Erdmann, K., Wildon, M.J.: Introduction to Lie Algebras. Springer, New York (2006)

    MATH  Google Scholar 

  5. Fujimoto, K., Nagai, H., Runggaldier, W.J.: Expected power-utility maximization under incomplete information and with Cox-process observations. Appl. Math. Optim. 67(1), 33–72 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  7. Hata, H., Sheu, S.J.: On the Hamilton–Jacobi–Bellman equation for an optimal consumption problem: I. Existence of solution. SIAM J. Control Optim. 50(4), 2373–2400 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hata, H., Sheu, S.J.: On the Hamilton–Jacobi–Bellman equation for an optimal consumption problem: II. Verification theorem. SIAM J. Control Optim. 50(4), 2401–2430 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119(1), 147–171 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland/Kodansha, Amsterdam (1989)

    MATH  Google Scholar 

  11. Kumano-go, H.: Pseudo-Differential Operators. The MIT Press, Cambridge (1982)

    MATH  Google Scholar 

  12. Lieb, E.H., Loss, M.: Analysis, 2nd edn. AMS, Providence (2001)

    MATH  Google Scholar 

  13. Liu, J.: Portfolio selection in stochastic environments. Rev. Financ. Stud. 20, 1–39 (2007)

    Article  MATH  Google Scholar 

  14. Nagai, H., Runggaldier, W.J.: PDE approach to utility maximization for market models with hidden Markov factors. In: Dalang, R.C., et al. (eds.) “Progress in Probability” Seminar on Stochastic Analysis, Random Fields and Applications, pp. 493–506. Birkhauser, Switzerland (2008)

    Chapter  Google Scholar 

  15. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  16. Oleinik, O., Radkevic, E.V.: Second-Order Equations with Non-Negative Characteristic Form. AMS, New York (1973)

    Book  Google Scholar 

  17. Putschögl, W., Sass, S.: Optimal consumption and investment under partial information. Decis. Econ. Financ. 31, 137–170 (2008)

    Article  MATH  Google Scholar 

  18. Tamura, T., Watanabe, Y.: Risk-sensitive portfolio optimization problems for hidden Markov factors on infinite time horizon. Asymptot. Anal. 75(3), 169–209 (2011)

    MATH  MathSciNet  Google Scholar 

  19. Tamura, T., Watanabe, Y.: Hypoellipticity and ergodicity of the Wonham filter as a diffusion process. Appl. Math. Optim. 64(1), 13–36 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Taksar, M., Zeng, X.: Optimal terminal wealth under partial information: both the drift and the volatility driven by a discrete-time Markov chain. SIAM J. Control Optim. 46(4), 1461–1482 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yûsuke Watanabe.

A Proof of Lemma 1

A Proof of Lemma 1

Proof

Step 1. Let \(\xi _i(t):=\mathbf {1}_{\{\xi (t)=\mathbf {e}_i\}}\) and

$$\begin{aligned} z_i(t) := \bar{E}[H(t)\xi _i(t) |\mathcal {Y}_{t}], \qquad i=1,\ldots ,d. \end{aligned}$$
(57)

Then, the process \(z(t) = (z_1(t),\ldots ,z_d(t))\) satisfies the following equation.

$$\begin{aligned} dz_i(t)&= \gamma \eta (\mathbf {e}_{i},h(t),c(t))z_i(t)dt + z_i(t) ( g(\mathbf {e}_i) + \gamma \sigma ^*h(t) ) \cdot dY(t)\nonumber \\&+ (Q^{*}z(t))_idt, \\ z_i(0)&= \mathbf {p}_i(0), \qquad i=1,\ldots ,d \nonumber \end{aligned}$$
(58)

We only outline the proof of (58). For technical details, see [3, Sects. 8.2–8.3] and [1, Chap. 3]. The dynamics of \(\xi (t)\) is given by

$$\begin{aligned} d\xi (t) = Q^{*}\xi (t)dt + dM(t), \end{aligned}$$

where \(M(t)=(M_1(t),\ldots ,M_d(t))\) is an \(\mathcal {F}_t\)-martingale of pure jump type taking values in \(\{\mathbf {e}_1,\ldots ,\mathbf {e}_d\}\). Recalling (4) and using Itô’ s formula, we obtain

$$\begin{aligned} H(t)\xi _i(t)&= \xi _i(0) + \int _0^t H(s)dM_i(s) + \int _0^t \gamma \eta (\xi (s),h(s),c(s))H(s)\xi _i(s)ds \\&+ \int _0^t H(s)\xi _i(s) ( g(\xi (s)) + \gamma \sigma ^* h(s) ) \cdot dY(s)\\&+ \int _0^t (Q^* H(s)\xi (s))_ids. \end{aligned}$$

We apply \(\bar{E}[\cdot |\mathcal {Y}_t]\) to both sides:

$$\begin{aligned} \bar{E}[\xi _i(0)|\mathcal {Y}_t]&= \bar{E}[\xi _i(0)] = E[\xi _i(0)] = \mathbf {p}_i(0),\\ \bar{E}[\int _0^t H(s)dM_i(s) |\mathcal {Y}_t]&= 0, \\ \bar{E}[\int _0^t \gamma \eta (\xi (s),h(s),c(s))H(s)\xi _i(s)ds|\mathcal {Y}_t]&= \int _0^t \bar{E}[\gamma \eta (\xi (s),h(s),c(s))H(s)\xi _i(s)|\mathcal {Y}_s]ds\\&= \int _0^t \gamma \eta (\mathbf {e}_{i},h(s),c(s))z_i(s)ds,\\ \bar{E}[ \int _0^t H(s)\xi _i(s) ( g(\xi (t)) + \gamma \sigma ^*h(s) ) \cdot dY(s)|\mathcal {Y}_t]&= \int _0^t \bar{E}[H(s)\xi _i(s) ( g(\xi (t)) + \gamma \sigma ^* h(s) |\mathcal {Y}_s]\cdot dY(s)\\&= \int _0^t z_i(s) ( g(\mathbf {e}_i) + \gamma \sigma ^*h(s))\cdot dY(s),\\ \bar{E}[\int _0^t (Q^* H(s)\xi (s))_ids|\mathcal {Y}_t]&= \int _0^t \bar{E}[(Q^* H(s)\xi (s))_i|\mathcal {Y}_s]ds = \int _0^t (Q^*z(s))_ids. \end{aligned}$$

Combining these, we obtain (58).

Step 2. Next, we claim that

$$\begin{aligned} z_i(t) = \bar{H}(t)x_i(t), \qquad i=1,\ldots ,d. \end{aligned}$$
(59)

Indeed, if we compute \(d(\bar{H}(t)x_i(t))\) by using Itô’s formula, we see that \(\tilde{q}_i(t):= \bar{H}(t)x_i(t)\) also satisfies (58). A similar computation is seen in the proof of Proposition 2.1 in [18].

Step 3. From (5), (57), (59), and that \(\sum _{i=1}^d x_i(t) = 1\), we deduce

$$\begin{aligned} E[(c(t)V^{h,c}(t))^\gamma ]&= v_0^\gamma \bar{E}[c(t)^\gamma H(t)]\\&= v_0^\gamma \bar{E}[c(t)^\gamma \bar{E}[H(t)|\mathcal {Y}_{t}]] = v_0^\gamma \bar{E}[ c(t)^\gamma \sum _{i=1}^{d}\bar{E}[H(t)\xi _i(t)|\mathcal {Y}_{t}]]\\&= v_0^\gamma \bar{E}[c(t)^\gamma \sum _{i=1}^{d}z_i(t)]= v_0^\gamma \bar{E}[ c(t)^\gamma \sum _{i=1}^{d}\bar{H}(t)x_i(t)] \\&= v_0^\gamma \bar{E}[ c(t)^\gamma \bar{H}(t)]. \end{aligned}$$

In a similar way, we obtain \(E[(V^{h,c}(t))^\gamma ] = v_0^\gamma \bar{E}[\bar{H}(t)]\). \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, Y. Study of a degenerate elliptic equation in an optimal consumption problem under partial information. Japan J. Indust. Appl. Math. 32, 157–185 (2015). https://doi.org/10.1007/s13160-015-0170-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-015-0170-z

Keywords

Mathematics Subject Classification

Navigation