Skip to main content
Log in

Modeling and simulation of dynamics of three-component flows on solid surface

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a phase field model for the dynamics of three-component immiscible flows on solid surface. The model is an extension of the two-component phase field model consists of the Cahn–Hilliard Navier–Stokes equations with the generalized Navier boundary condition. The generalization of the approach to the three phase problem requires some extra consistency conditions for the system in the bulk and at the boundary in order for the model to give physically relevant results. We formulate the boundary conditions that enforce the consistency conditions using the Lagrangian multipliers. We then develop an efficient adaptive mesh refinement technique to solve the system. Several numerical results are given, including the buoyancy-driven droplet through a fluid–fluid interface, formation of four-phase contact line and dynamics of a compound droplet on solid surface under shear flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kan, H.C., Udaykumar, H.S., Shyy, W., Tran-Son-Tay, R.: Hydrodynamics of a compound drop with application to leukocyte modeling. Phys. Fluids 10, 760–774 (1998)

  2. Kan, H.C., Udaykumar, H.S., Shyy, W., Tran-Son-Tay, R.: Numerical analysis of the deformation of an adherent drop under shear flow. J. Biomech. Eng. 121(2), 160–169 (1999)

    Article  Google Scholar 

  3. Qian, T., Wang, X.P., Sheng, P.: Molecular scale contact line hydrodynamics of immiscible flows. Phys. Rev. E 68, 016306 (2003)

    Article  Google Scholar 

  4. Wang, X.P., Qian, T., Sheng, P.: Moving contact line on chemically patterned surfaces. J. Fluid Mech. 605, 59–78 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Qian, T., Wang, X.P., Sheng, P.: A variational approach to the moving contact line hydrodynamics. J. Fluid Mech. 564, 333–336 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gao, M., Wang, X.P.: A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231, 1372–1386 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gao, M., Wang, X.P.: An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity. Journal of Computational Physics. 272, 704–718 (2014)

    Article  MathSciNet  Google Scholar 

  8. Di, Y., Wang, X.P.: Precursor simulations in spreading using a multi-mesh adaptive finite elment method. J. Comput. Phys. 228, 1380–1390 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. He, Q., Glowinski, R., Wang, X.P.: A least square/finite element method for the numerical solution of the Navier–Stokes–Cahn–Hilliard system modeling the motion of the contact line. J. Comput. Phys. 230, 4991–5009 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Guo, S., Gao, M., Xiong, X., Jian Wang, Y., Wang, X., Sheng, P., Tong, P.: Direct measurement of friction of a fluctuating contact line. Phys. Rev. Lett. 111, 026101 (2013) PRL, 2013

  11. Xianmin, Xu, Wang, Xiaoping: Analysis of wetting and contact angle hysteresis on chemically patterned surfaces. SIAM J. Appl. Math. 71(5), 1753–1779 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Boyer, F., Lapuerta, C.: Study of a three-component Cahn–Hilliard flow model. ESAIM: M2AN 40, 653–687 (2006)

  13. Boyer, F., Sebastian, M.: Numerical schemes for a three component Cahn–Hilliard model. ESAIM: M2AN 45, 697–738 (2011)

  14. Boyer, F., Lapuerta, C., Minjeaud, S., Piar, B., Quintard, M.: Cahn–Hilliard/Navier–Stokes model for the simulation of three-phase flows. Transp. Porous Med. 82, 463–483 (2010)

  15. Kim, Junseok: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12, 613–661 (2012)

    MathSciNet  Google Scholar 

  16. Kim, Junseok, Lowengrub, John: Phase-field modeling and simulation of three-phase flows. Interf. Free Bound. 7, 435–466 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kim, Junseok, Kang, Kyungkeun, Lowengrub, John: Conservative multigrid methods for ternary Cahn–Hilliard systems. Commun. Math. Sci. 2, 53–77 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Smith, K.A., Solis, F.J., Chopp, D.L.: A projection method for motion of triple junctions by levels sets. Interf. Free Bound. 4(3), 263–276 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Minjeaud, Sebastian: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model. Numer. Methods Partial Differ. Equ. 29(2), 584–618 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bao, K., Shi, Y., Sun, S., Wang, X.P.: A finite element method for the numerical solution of the coupled Cahn Hilliard and Navier Stokes system for moving contact line problems. J. Comput. Phys. 231, 8083–8099 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shi, Y., Bao, K., Wang, X.P.: 3D adaptive finite element method for a phase field model for moving contact line problems. Inverse Probl. Imaging 3, 947–959 (2013)

    Article  MathSciNet  Google Scholar 

  22. Qian, T., Wang, X.P., Sheng, P.: Molecular hydrodynamics of the moving contact line in two-phase immiscible flows. Commun. Comput. Phys. 1, 1–52 (2006)

    MATH  Google Scholar 

  23. Jacqmin, D.: Contact line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22, 237–254 (2006)

    Article  Google Scholar 

  26. Mahadevan, L., Adda-Bedia, M., Pomeau, Y.: Four-phase merging in sessile compound drops. J. Fluid Mech. 451, 411–420 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This publication was based on work supported in part the Hong Kong RGC-GRF Grants 605311, 605513 and NNSF of China Grant 91230102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ping Wang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Wang, XP. Modeling and simulation of dynamics of three-component flows on solid surface. Japan J. Indust. Appl. Math. 31, 611–631 (2014). https://doi.org/10.1007/s13160-014-0151-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-014-0151-7

Keywords

Mathematics Subject Classification

Navigation