Skip to main content
Log in

Mutual inclusion in a nonlocal competitive Lotka Volterra system

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We investigate the traveling front solutions of a nonlocal Lotka Volterra system to illustrate the outcome of the competition between two species. The existence of the front solution is obtained through a new monotone iteration scheme, the uniqueness of the front solution corresponding to each propagation speed is proved by sliding domain method adapted to nonlocal systems, and the asymptotic decay rate of the fronts with critical and noncritical wave speeds is derived by a new method, which is different from the single equation case. The results demonstrate that in the long run, two weakly competing species can co-exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bates P., Chmaj A.: An integro-differential model for phase transitions: Stationary solutions in higher space dimensions. J. Stat. Phys. 95, 1119–1139 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bates P., Fife P., Ren X., Wang X.: Travelling waves in a convolution model for phase transitions. Arch. Rational Mech. Anal. 138, 105–136 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bull. Braz. Math. Soc. 22(1), 1–37

  4. Carr J., Chmaj A.: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc. 132, 2433–2439 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen X.: Existence, uniqueness and asymptotic stability of travelling waves in nonlocal evolution equations. Adv. Differ. Equ. 2, 125–160 (1997)

    MATH  Google Scholar 

  6. Cortazar C., Elgueta M., Rossi J.: A non-local diffusion equation whose solutions develop a free boundary. Ann. Henri Poincaré 6, 269–281 (2005)

    Google Scholar 

  7. Cortazar C., Elgueta M., Rossi J., Wolanski N.: Boundary fluxes for non-local diffusion. J. Differ. Equ. 234, 360–390 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ermrntrout B., Mcleod J.: Existence and uniqueness of traveling waves for a neural network. Proc. R. Soc. Edinburgh 123A, 1013–1022 (1994)

    Google Scholar 

  9. Coville, J.: Equations de réaction diffusion non-locale. Ph.D thesis, University of Paris (2003)

  10. Coville J.: Maximum principles, sliding techniques and applications to nonlocal equations. Electron. J. Diff. Eqns. 68, 1–23 (2007)

    Google Scholar 

  11. Coville J., Dupaigne L.: Propagation speed of travelling fronts in nonlocal reaction diffusion equations. Nonl. Anal. TMA 60, 797–819 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Coville J., Dupaigne L.: On a nonlocal equation arising in population dynamics. Proc. R. Soc. Edinburgh 137, 1–29 (2007)

    Article  MathSciNet  Google Scholar 

  13. Fang J.J., Zhao X.: Existence and uniqueness of traveling waves for non-monotone integral equations with applications. J. Differ. Equ. 248, 2199–2226 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fife P., Wang X.: A convolution model for interfacial motion: the generation and propagation of internal layers in higher space dimensions. Adv. Differ. Equ. 3, 85–110 (1998)

    MATH  MathSciNet  Google Scholar 

  15. Hou, X.: On the minimal speed and asymptotics of the wave solutions for the lotka volterra system arXiv:1002.2882

  16. Hou, X., Li, Y.: Competition exclusion—a case study of the front solutions to the nonlocal Lotka Volterra system, Preprint

  17. Hou X., Feng W.: Traveling waves and their stability in a coupled reaction diffusion system. Comm. Pure Appl. Anal. 10, 141–160 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ignat L., Rossi J.: A nonlocal convection-diffusion equation. J. Funct. Anal. 251, 399–437 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lv G.: Asymptotic behavior of traveling wave fronts and entire solutions for a nonlocal monostable equation. Nonlinear Anal. 72, 3659–3668 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. de Masi A., Orlandi E., Presutti E.: Traveling fronts in nonlocal evolution equations. Arch. Rational Mech. Anal. 132(2), 143–205 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mei M., Ou C., Zhao X.: Global stability of monostable traveling waves for nonlocal time-delayed reaction-difusion equations. SIAM J. Math. Anal. 42(6), 2762–2790 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pan S., Li W., Lin G.: Traveling fronts in nonlocal delayed reaction-diffusion systems and applications. Z. Angew. Math. Phys. 60, 377–392 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schumacher K.: Traveling-front solutions for integro-differential equations. I, Jurnal Fur Die Reine Und Angewandte Mathematik 316, 54–70 (1979)

    MathSciNet  Google Scholar 

  24. Widder D.V.: The Laplace Transform. Princeton University Press, Princeton (1941)

    Google Scholar 

  25. Zhang L.: Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neural networks. J. Differ. Eqn. 197, 162–196 (2004)

    Article  MATH  Google Scholar 

  26. Zhang L., Li B.: Traveling wave solutions in an integro-differential competition model. Discr. Continuous Dyn. Syst. Ser. B (DCDS-B) 17(1), 417–428 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojie Hou.

Additional information

This study was supported by the Fundamental Research Funds for the Central Universities of China and by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

About this article

Cite this article

Hou, X., Wang, B. & Zhang, Z. Mutual inclusion in a nonlocal competitive Lotka Volterra system. Japan J. Indust. Appl. Math. 31, 87–110 (2014). https://doi.org/10.1007/s13160-013-0126-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-013-0126-0

Keywords

Mathematics Subject Classification (2000)

Navigation