Skip to main content
Log in

Numerical simulation of blood flow in the thoracic aorta using a centerline-fitted finite difference approach

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a numerical method to simulate a blood flow in a thoracic aorta. Patient-specific aorta shapes are used in a centerline-fitted curvilinear coordinate system in which the Navier–Stokes equation is discretized using finite-difference approximation with immersed boundary method. The main target of this study is the elucidation of flow fields in the thoracic aorta which is considered to be affecting the development of aneurysms. Swirling flow occurrence is investigated using simplified shapes of pipes with curvature and torsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Isselbacher E.M: Thoracic and abdominal aortic aneurysms. Circulation 111, 816–828 (2005)

    Article  Google Scholar 

  2. Elefteriades J.A.: Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks. Ann. Thorac. Surg 74, S1877–S1880 (2002)

    Article  Google Scholar 

  3. Davies R.R., Goldstein L.J., Coady M.A., Tittle S.L., Rizzo J.A., Kopf G.S., Elefteriades J.A.: Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann. Thorac. Surg 73, 17–28 (2002)

    Article  Google Scholar 

  4. Taylor C.A., Hughes T.J.R., Zarins C.K.: Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158, 155–196 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Vignon-Clementel I.E., Figueroa C.A., Jansen K.J., Taylor C.A.: Outflow boundary conditions for finite element modeling of blood flow and pressure in arteries, Comp. Methods Appl. Mech. Eng. 195, 3776–3796 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Figueroa C.A., Vignon-Clementel I.E., Jansen K.E., Hughes T.J.R., Taylor C.A.: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195, 5685–5706 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Humphrey J.D., Taylor C.A.: Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Ann. Rev. Biomed. Eng. 10, 221–246 (2008)

    Article  Google Scholar 

  8. Goldstein D., Handler R., Sirovich L.: Modeling a no-slip boundary with an external force field. J. Comput. Phys. 105, 354–366 (1993)

    Article  MATH  Google Scholar 

  9. Fujita H., Kawahara H., Kawarada H.: Distribution theoretic approach to fictitious domain method for Neumann problems. East–West J. Numer. Math. 3(2), 111–126 (1995)

    MathSciNet  MATH  Google Scholar 

  10. Mittal R., Iaccarino G.: Immersed boundary methods. Ann. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  11. Rubin G.D., Paik D.S., Johnson P.C., Napel S.: Measurement of the aorta and its branches with helical CT. Radiology 206, 823–829 (1998)

    Google Scholar 

  12. Tillich M., Bell R.E., Paik D.S., Fleischmann D., Sofilos M.C., Logan L.J., Rubin G.D.: Iliac arterial injuries after endovascular repair of abdominal aortic aneurysms: correlation with iliac curvature and diameter. Radiology 219, 129–136 (2001)

    Article  Google Scholar 

  13. Zhang S.-L.: GPBi-CG: Generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 18, 537–551 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kawamura, T., Kuwahara, K.: Computation of high Reynolds number flow around a circular cylinder with surface roughness. AIAA Paper 84-0340 (1984)

  15. Berger S.A., Talbot L.: Flow in curved pipes. Ann. Rev. Fluid Mech. 15, 461–512 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Suito.

About this article

Cite this article

Suito, H., Ueda, T. & Sze, D. Numerical simulation of blood flow in the thoracic aorta using a centerline-fitted finite difference approach. Japan J. Indust. Appl. Math. 30, 701–710 (2013). https://doi.org/10.1007/s13160-013-0123-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-013-0123-3

Keywords

Mathematics Subject Classification (2000)

Navigation