Skip to main content
Log in

Guaranteed high-precision estimation for P 0 interpolation constants on triangular finite elements

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider an explicit estimation for error constants from two basic constant interpolations on triangular finite elements. The problem of estimating the interpolation constants is related to the eigenvalue problems of the Laplacian with certain boundary conditions. By adopting the Lehmann–Goerisch theorem and finite element spaces with a variable mesh size and polynomial degree, we succeed in bounding the leading eigenvalues of the Laplacian and the error constants with high precision. An online demo for the constant estimation is also available at http://www.xfliu.org/onlinelab/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.: A posteriori error estimation in finite element annalysis. Wiley, New york (2000)

  2. Arnold D., Brezzi F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Math. Model. Numer. Anal. 19, 7–32 (1985)

    MathSciNet  MATH  Google Scholar 

  3. Babuška I., Aziz A.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 39, 214–226 (1976)

    Article  Google Scholar 

  4. Babuska, I., Osborn, J.: Eigenvalue problems, finite element methods (part 1). In: P.G.Ciarlet, J. Lions (eds.) Handbook of Numerical Analysis, vol. II. Elsevier Science Publishers B.V., North-Holland, Amsterdam (1991)

  5. Behnke H.: The calculation of guaranteed bounds for eigenvalues using complementary variational principles. Computing 47(1), 11–27 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Behnke, H., Goerisch, F.: Inclusions for eigenvalues of selfadjoint problems. In: Herzberger, J. (ed.) Topics in Validated Computations, pp. 277–322. North-Holland, Amsterdam (1994)

  7. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer, Berlin (1991)

  8. Brezzi F., Jim Douglas J., Marini L.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dautray, R., Lions, J., Artola, M., Cessenat, M.: Mathematical analysis and numerical methods for science and technology: Spectral theory and applications, vol. 3. Springer, Berlin (2000)

  10. Goerisch, F., He, Z.: The determination of guaranteed bounds to eigenvalues with the use of variational methods I. In: Computer arithmetic and self-validating numerical methods, pp. 137–153. Academic Press Professional, Inc., London (1990)

  11. Grisvard, P.: Elliptic problems in nonsmooth domains. Classics Appl. Math. 69. SIAM (2011)

  12. Guo B., Babuška I.: The hp version of the finite element method. Comput. Mech. 1(1), 21–41 (1986)

    Article  MATH  Google Scholar 

  13. Kikuchi, F., Liu, X.: Determination of the Babuška-Aziz constant for the linear triangular finite element. Jpn. J. Ind. Appl. Math. 23, 75–82 (2006)

    Google Scholar 

  14. Kikuchi F., Liu X.: Estimation of interpolation error constants for the P 0 and P 1 triangular finite element. Comput. Methods Appl. Mech. Eng. 196, 3750–3758 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kobayashi, K.: On the interpolation constants over triangular elements (in Japanese). Kyoto University Research Information Repository, vol.1733, pp. 58–77 (2011)

  16. Payne L.E., Weinberger H.F.: An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5, 286–292 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lehmann N.: Optimale eigenwerteinschließungen. Numer. Math. 5(1), 246–272 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu X., Kikuchi F.: Analysis and estimation of error constants for interpolations over triangular finite elements. J. Math. Sci. Univ. Tokyo 17, 27–78 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Liu X., Oishi S.: Verified eigenvalue evaluation for the laplacian over polygonal domains of arbitrary shape. SIAM J. Numer. Anal. 51(3), 1634–1654 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nakao M., Yamamoto N.: A guaranteed bound of the optimal constant in the error estimates for linear triangular element. Comput [Supplementum] 15, 163–173 (2001)

    MathSciNet  Google Scholar 

  21. Nakao, M., Yamamoto, N.: A guaranteed bound of the optimal constant in the error estimates for linear triangular element, part ii: Details. In: Perspectives on Enclosure Methods, the Proceedings Volume for Invited Lectures of SCAN2000, pp. 265–276. Springer, Vienna (2001)

  22. Plum M.: Bounds for eigenvalues of second-order elliptic differential operators. ZAMP Z. Angew. Math. Phys, 42(6), 848–863 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rump, S.: INTLAB-INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999). http://www.ti3.tu-harburg.de/rump/

  24. Strang, G., Fix, G.: An Analysis of the Finite Element Method, 2edn. Wellesley-Cambridge Press, USA (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Liu.

About this article

Cite this article

Liu, X., Oishi, S. Guaranteed high-precision estimation for P 0 interpolation constants on triangular finite elements. Japan J. Indust. Appl. Math. 30, 635–652 (2013). https://doi.org/10.1007/s13160-013-0120-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-013-0120-6

Keywords

Mathematics Subject Classification

Navigation