Skip to main content
Log in

A modified form of \({\left(\frac{G^\prime}{G}\right)}\) -expansion method and its application to Potential Kadomtsev–Petviashvili (PKP) equation

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a modified form of the \({(\frac{G^\prime}{G})}\) -expansion method and as a application proposed to construct exact solutions of (2 + 1)-dimensional Potential Kadomtsev–Petviashvili equation. Each of the obtained solutions, namely hyperbolic function solutions, trigonometric function solutions and rational solutions contains an explicit linear function of the variables in the considered equation. It is shown that the proposed method with the help of symbolic computation provides a more powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ablowitz, M.J., Segur, H.: Solitons and Inverse Scattering Transform, SIAM, Philadelphia (1981)

  2. Tam H.W., Hu X.B.: Soliton solutions and Bäcklund transformation for the Kupershmidt five–field lattice: a bilinear approach. Appl. Math. Lett. 15, 987–993 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

  4. Elmer C.E., Van Vleck E.S.: A variant of Newton’s method for the computation of traveling waves of bistable differential–difference equations. J. Dyn. Differ. Equ. 14, 493–517 (2002)

    Article  MATH  Google Scholar 

  5. Abazari R., Borhanifar A.: Numerical study of Burgers’ and coupled Burgers’ equations by differential transformation method. Comput. Math. Appl 59, 2711–2722 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Freeman N.C., Nimmo J.J.C.: Soliton solitons of the KdV and KP equations: the Wroanskian technique. Proc. R. Soc. Lond. A 389, 319–329 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Liu G.T., Fan T.Y.: New applications of developed Jacobi elliptic function expansion methods. Phys. lett. A 345, 161–166 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wang M.L.: Exact solutions for a compound KdV–Burgers equation. Phys. Lett. A 213, 279–287 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Yan Z.Y.: An improved algebra method and its applications in nonlinear wave equations. Chaos. Solitons Fract. 21, 1013–1021 (2004)

    Article  MATH  Google Scholar 

  10. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)

  11. Yan C.T.: A simple transformation for nonlinear waves. Phys. Lett. A 224, 77–84 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Malfliet W., Hereman W.: The tanh method I: exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54, 563–568 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Xu F.: Application of exp–function method to symmetric regularized long wave (SRLW) equation. Phys. Lett. A 372, 252–257 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Tascan F., Bekir A., Koparan M.: Travelling wave solutions of nonlinear evolution equations by using the first integral method. Commun. Nonlinear Sci. Numer. Simulat. 14, 1810–1815 (2009)

    Article  Google Scholar 

  15. Guo–cheng W., Tie–cheng X.: A new method for constructing soliton solutions and periodic solutions of nonlinear evolution equations. Phys. Lett. A 372, 604–609 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wang M., Li X., Zhang J.: The \({(\frac{G^{\prime}}{G})}\) –expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bekir A.: Application of the \({(\frac{G^{\prime}}{G})}\) –expansion method for nonlinear evolution equations. Phys. Lett. A 372, 3400–3406 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bekir A., Cevikel A.C.: New exact travelling wave solutions of nonlinear physical models. Chaos Solitons Fract. 41, 1733–1739 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zayed E.M.E., Gepreel K.A.: Some applications of the \({(\frac{G^{\prime}}{G})}\) –expansion method to non-linear partial differential equations. Appl. Math. Comput. 212, 1–13 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Abazari R.: Application of \({(\frac{G^\prime}{G})}\) –expansion method to travelling wave solutions of three nonlinear evolution equation. Comput. Fluids 39, 1957–1963 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Abazari R.: The \({(\frac{G^\prime}{G})}\) –expansion method for Tzitzéica type nonlinear evolution equations. Math. Comput. Model. 52, 1834–1845 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Abazari, R., Abazari, R.: Hyperbolic, trigonometric and rational function solutions of Hirota–Ramani equation via \({(\frac{G^\prime}{G})}\) –expansion method. Math. Prob. Eng, Volume 2011, Article ID 424801, 11 pages. doi:10.1155/2011/424801

  23. Abazari R.: The \({(\frac{G^\prime}{G})}\) –expansion method for the coupled Boussinesq equations. Proc. Eng. 10, 2845–2850 (2011)

    Article  MathSciNet  Google Scholar 

  24. Kabir M.M., Borhanifar A., Abazari R.: Application of \({(\frac{G^\prime}{G})}\) –expansion method to Regularized Long Wave (RLW) equation. Comput. Math. Appl. 61, 2044–2047 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang J., Wei X., Lu Y.: A generalized \({(\frac{G^{\prime}}{G})}\) –expansion method and its applications. Phys. Lett. A 372, 3653–3658 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhang S., Wang W., Tong J.: A generalized \({(\frac{G^{\prime}}{G})}\) –expansion method and its application to the (2 + 1)–dimensional Broer–Kaup equations. Appl. Math. Comput. 209, 399–404 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Yu-Bin Z., Chao L.: Application of modified \({(\frac{G^{\prime}}{G})}\) –expansion method to traveling wave solutions for Whitham Broer Kaup–Like equations. Commun. Theor. Phys. 51, 664–670 (2009)

    Article  MATH  Google Scholar 

  28. Zhang H.: New application of the\({(\frac{G^{\prime}}{G})}\) –expansion method, Commun. Nonlinear Sci. Numer. Simul. 14, 3220–3225 (2009)

    Article  MATH  Google Scholar 

  29. Borhanifar A., Kabir M.M.: New periodic and soliton solutions by application of Exp-function method for nonlinear evolution equations. J Comput. Appl. Math. 229, 158–167 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Abazari.

About this article

Cite this article

Abazari, R. A modified form of \({\left(\frac{G^\prime}{G}\right)}\) -expansion method and its application to Potential Kadomtsev–Petviashvili (PKP) equation. Japan J. Indust. Appl. Math. 31, 125–136 (2014). https://doi.org/10.1007/s13160-013-0110-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-013-0110-8

Keywords

Mathematics Subject Classification

Navigation