Skip to main content
Log in

Computation of the Shapley value of minimum cost spanning tree games: #P-hardness and polynomial cases

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We show that computing the Shapley value of minimum cost spanning tree games is #P-hard even if the cost functions are restricted to be {0,1}-valued. The proof is by a reduction from counting the number of minimum 2-terminal vertex cuts of an undirected graph, which is #P-complete. We also investigate minimum cost spanning tree games whose Shapley values can be computed in polynomial time. We show that if the cost function of the given network is a subtree distance, which is a generalization of a tree metric, then the Shapley value of the associated minimum cost spanning tree game can be computed in O(n 4) time, where n is the number of players.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AboElFotoh H.M., Colbourn C.J.: Computing 2-terminal reliability for radio-broadcast networks. IEEE Trans. Reliab. 38, 538–555 (1989)

    Article  MATH  Google Scholar 

  2. Ando K., Kato S.: Reduction of ultrametric minimum cost spanning tree games to cost allocation games on rooted trees. J. Oper. Res. Soc. Jpn. 53, 62–68 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Aziz, H., Lachish, O., Paterson, M., Savani, R.: Power indices in spanning tree games. In: Goldberg, A., Zhou, Y. (eds.) Proceedings of the 5th International Conference on Algorithmic Aspects in Information and Management—AAIM 2009. Lecture Notes in Computer Science, vol. 5564. Springer, Berlin, pp. 55–67 (2009)

  4. Bacher R.: Determinants of matrices related to the Pascal triangle. J. de Théorie des Nombres de Bordeaux 14, 19–41 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergantiños G., Vidal-Puga J.J.: The optimistic TU game in minimum cost spanning tree problems. Int. J. Game Theory 36, 223–239 (2007)

    Article  MATH  Google Scholar 

  6. Bird C.G.: On cost allocation for a spanning tree. A game theoretic approach. Networks 6, 335–350 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bogomolnaia A., Moulin H.: Sharing a minimal cost spanning tree: Beyond the Folk solution. Games Econ. Behav. 69, 238–248 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dutta B., Kar A.: Cost monotonicity, consistency and minimum cost spanning tree games. Games Econ. Behav. 48, 223–248 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faigle U., Kern W., Fekete S.P., Hochstättler W.: On the complexity of testing membership in the core of min-cost spanning tree games. Int. J. Game Theory 26, 361–366 (1997)

    Article  MATH  Google Scholar 

  10. Faigle U., Kern W., Kuipers J.: Computing the nucleolus of min-cost spanning tree games is NP-hard. Int. J. Game Theory 27, 443–450 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feltkamp, V., Tijs, S., Muto, S.: On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems. CentER Discussion Paper No. 94106, Center for Economic Research, Tilburg University (1994)

  12. Gavril F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory Series B 16, 47–56 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Graham R.L., Knuth D.E., Patashnik O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Boston (1994)

    MATH  Google Scholar 

  14. Granot D., Huberman G.: Minimum cost spanning tree games. Math. Progr. 21, 1–18 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Granot D., Huberman G.: The relationship between convex games and minimum cost spanning tree games: a case for permutationally convex games. SIAM J. Algebraic Discret. Methods 3, 288–292 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Granot D., Huberman G.: On the core and nucleolus of minimum cost spanning tree games. Math. Progr. 29, 323–347 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hirai H.: Characterization of the distance between subtrees of a tree by the associated tight span. Ann. Comb. 10, 111–128 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kar A.: Axiomatization of the Shapley value on minimum cost spanning tree games. Games Econ. Behav. 38, 265–277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kruskal J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  20. Norde H., Moretti S., Tijs S.: Minimum cost spanning tree games and population monotonic allocation schemes. Eur. J. Oper. Res. 154, 84–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rose D.J., Tarjan R.E., Lueker G.S.: Algorithmic aspect of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Semple C., Steel M.: Phylogenetics. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  23. Shapley L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds) Contributions to the Theory of Games, vol. II., pp. 307–317. Princeton University Press, Princeton (1953)

    Google Scholar 

  24. Winter E.: The Shapley value. In: Aumann, R.J., Hart, S. (eds) Handbook of Game Theory, vol. 3., pp. 2025–2054. Elsevier, Amsterdam (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutoshi Ando.

Additional information

This work is supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C) (No. 23510066).

About this article

Cite this article

Ando, K. Computation of the Shapley value of minimum cost spanning tree games: #P-hardness and polynomial cases. Japan J. Indust. Appl. Math. 29, 385–400 (2012). https://doi.org/10.1007/s13160-012-0078-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-012-0078-9

Keywords

Mathematics Subject Classification

Navigation