Skip to main content
Log in

Shortest bibranchings and valuated matroid intersection

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

For a digraph D = (V, A) and a partition {S, T} of V, an arc set \({B \subseteq A}\) is called an ST if each vertex in T is reachable from S and each vertex in S reaches T in the subgraph (V, B). Bibranchings commonly generalize bipartite edge covers and arborescences. A totally dual integral linear system determining the ST polytope is provided by Schrijver, and the shortest ST problem, whose objective is to find an ST of minimum total arc weight, can be solved in polynomial time by the ellipsoid method or a faster combinatorial algorithm due to Keijsper and Pendavingh. The valuated matroid intersection problem, introduced by Murota, is a weighted generalization of the independent matching problem, including the independent assignment problem and the weighted matroid intersection problem. The valuated matroid intersection problem can be solved efficiently with polynomially many value oracles by extending classical combinatorial algorithms for the weighted matroid intersection problem. In this paper, we show that the shortest ST problem is polynomially reducible to the valuated matroid intersection problem. This reduction suggests one answer to why the shortest ST problem is tractable, and implies new combinatorial algorithms for the shortest ST problem based on the valuated matroid intersection algorithm, where a value oracle corresponds to computing a minimum-weight arborescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dress A.W.M., Wenzel W.: Valuated matroid: a new look at the greedy algorithm. Appl. Math. Lett 3, 33–35 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dress A.W.M., Wenzel W.: Valuated matroids. Adv. Math. 93, 214–250 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. In: Guy R., Hanani H., Sauer N., Schönheim J. (eds.) Combinatorial Structures and Their Applications (Proceedings Calgary International Conference on Combinatorial Structures and Their Applications, Calgary, 1969), pp. 93–96 (1970)

  4. Frank A.: A weighted matroid intersection algorithm. J. Algorithms 2, 328–336 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Frank, A.: Generalized polymatroids. In: Hajnal A., Lovász L., Sós V.T. (eds.) Finite and Infinite Sets, vol. I (Proceedings of the Sixth Hungarian Combinatorial Colloquium, Eger, 1981), pp. 285–294 (1984)

  6. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Annals of Discrete Mathematics, vol. 58. Elsevier, Amsterdam (2005)

  7. Gabow H.N., Galil Z., Spencer T., Tarjan R.E.: Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6, 109–122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Iri M., Tomizawa N.: An algorithm for finding an optimal “independent assignment”. J. Oper. Res. Soc. Japan 19, 32–57 (1976)

    MathSciNet  MATH  Google Scholar 

  9. Keijsper J., Pendavingh R.: An efficient algorithm for minimum-weight bibranching. J. Combin. Theory Ser. B 73, 130–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lawler E.L.: Matroid intersection algorithms. Math. Program 9, 31–56 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Murota K.: Convexity and Steinitz’s exchange property. Adv. Math. 125, 272–331 (1996)

    Article  MathSciNet  Google Scholar 

  12. Murota K.: Valuated matroid intersection I: Optimality criteria. SIAM J. Discrete Math. 9, 545–561 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Murota K.: Valuated matroid intersection II: Algorithms. SIAM J. Discrete Math. 9, 562–576 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Murota K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  15. Murota K.: Matrices and Matroids for Systems Analysis. softcover edn. Springer, Berlin (2010)

    Book  Google Scholar 

  16. Murota K., Shioura A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schrijver A.: Min–max relations for directed graphs. Ann. Discrete Math. 16, 261–280 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Schrijver A.: Total dual integrality of matching forest constraints. Combinatorica 20, 575–588 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schrijver A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  20. Shioura A.: A constructive proof for the induciton of M-convex functions through networks. Discrete Appl. Math. 82, 271–278 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shioura, A.: Polynomial-time approximation schemes for maximizing gross substitutes utility under budget constraints. In: Demetrescu, C., Halldórsson, M.M. (eds.) Proceedings of the 19th Annual European Symposium on Algorithms. LNCS, vol. 6942 pp. 1–12. Springer, Berlin (2011)

  22. Takazawa, K.: Optimal matching forests and valuated delta-matroids. In: Günlük, O., Woeginger, G.J. (eds.) Integer Programming and Combinatorial Optimization: Proceedings of the 15th International IPCO Conference. LNCS, vol. 6655, pp. 404–416. Springer, Berlin (2011)

  23. Tardos, É: Generalized matroids and supermodular colourings. In: Lovász, L., Recski, A. (eds.) Matroid Theory (Proceedings Colloquium on Matroid Theory, Szeged, 1982), pp. 359–382 (1985)

  24. Tomizawa N.: On some techniques useful for solution of transportation network problems. Networks 1, 173–194 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenjiro Takazawa.

About this article

Cite this article

Takazawa, K. Shortest bibranchings and valuated matroid intersection. Japan J. Indust. Appl. Math. 29, 561–573 (2012). https://doi.org/10.1007/s13160-012-0072-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-012-0072-2

Keywords

Mathematics Subject Classification

Navigation