Skip to main content
Log in

Semi-discrete finite difference multiscale scheme for a concrete corrosion model: a priori estimates and convergence

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We study a semi-discrete finite difference multiscale scheme for a concrete corrosion model consisting of a system of two-scale reaction–diffusion equations coupled with an ordinary differential equation. We prove energy and regularity estimates and use them to get the necessary compactness of the approximate solutions. Finally, we illustrate numerically the behavior of the two-scale finite difference approximation of the solution to our system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulle A., E W.: Finite difference heterogeneous multi-scale method for homogenization problems. J. Comput. Phys. 191, 18–39 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berz E.: Sublinear functions on R. Aequat. Math. 12(2-3), 200–206 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beddoe R.E., Dorner H.W.: Modelling acid attack on concrete. Part 1: the essential mechanisms. Cement Concrete Res. 35, 2333–2339 (2005)

    Article  Google Scholar 

  4. Böhm M., Jahani F., Devinny J., Rosen G.: A moving-boundary system modeling corrosion of sewer pipes. Appl. Math. Comput. 92, 247–269 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chalupecký V., Fatima T., Muntean A.: Multiscale sulfate attack on sewer pipes: numerical study of a fast micro-macro mass transfer limit. J. Math-for-Industry 2(2010B-7), 171–181 (2010)

    MATH  Google Scholar 

  6. Cohen S.D., Hindmarsh A.C.: CVODE, a stiff/nonstiff ODE solver in C. Comput. Phys. 10, 138–143 (1996)

    Google Scholar 

  7. Danckwerts P.V.: Gas-Liquid Reactions. McGraw-Hill, New York (1970)

    Google Scholar 

  8. E W., Engquist B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1, 87–132 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Efendiev, Y., Hou, T.Y.: Multiscale finite element methods. In: Theory and Applications. Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4. Springer, Berlin (2009)

  10. Fatima T., Arab N., Zemskov E.P., Muntean A.: Homogenization of a reaction-diffusion system modeling sulfate corrosion in locally-periodic perforated domains. J. Eng. Math. 69(2), 261–276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fatima, T., Muntean, A.: Sulfate attack in sewer pipes: derivation of a concrete corrosion model via two-scale convergence. Nonlinear Anal. RWA (2012, to appear)

  12. Gallouët T., Herbin R., Vignal M.H.: Error estimates on the approximate finite volume solution of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal. 37(6), 1935–1972 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Geers M.G.D., Kouznetsova V., Brekelmans V.A.M.: Multi-scale computational homogenization: trends & challenges. J. Comput. Appl. Math. 234(7), 2175–2182 (2010)

    Article  MATH  Google Scholar 

  14. Hornung, U. (ed.): Homogenization and Porous Media. Interdisciplinary Applied Mathematics, vol.6. Springer, New York (1997)

  15. Jahani F., Devinny J., Mansfeld F., Rosen I.G., Sun Z., Wang C.: Investigations of sulfuric acid corrosion of the concrete, I. Modeling and chemical observations. J. Environ. Eng. 127(7), 572–579 (2001)

    Article  Google Scholar 

  16. Ladyzhenskaya O.A.: The Boundary Value Problems of Mathematical Physics. Springer, New York (1985)

    MATH  Google Scholar 

  17. Lions J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  18. Matache A.-M., Babuska I., Schwab C.: Generalized p-FEM in homogenization. Numerische Mathematik 86, 319–375 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Müllauer, W., Beddoe, R.E., Heinz, D.: Sulfate attack on concrete—solution concentration and phase stability. In: Concrete in Aggressive Aqueous Environments, Performance, Testing and Modeling, pp. 18–27. RILEM Publications (2009)

  20. Muntean A., Lakkis O.: Rate of convergence for a Galerkin scheme approximating a two-scale reaction-diffusion system with nonlinear transmission condition. RIMS Kokyuroku 1693, 85–98 (2010)

    Google Scholar 

  21. Muntean A., Neuss-Radu M.: A multiscale Galerkin approach for a class of nonlinear coupled reaction-diffusion systems in complex media. J. Math. Anal. Appl. 371(2), 705–718 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Neuss-Radu M., Ludwig S., Jäger W.: Multiscale analysis and simulation of a reaction–diffusion problem with transmission conditions. Nonlinear Anal. RWA. 11(6), 4572–4585 (2010)

    Article  MATH  Google Scholar 

  23. van Noorden T.L., Muntean A.: Homogenization of a locally-periodic medium with areas of low and high diffusivity. Eur. J. Appl. Math. 22(5), 493–516 (2011)

    Article  MATH  Google Scholar 

  24. Tixier R., Mobasher B., Asce M.: Modeling of damage in cement-based materials subjected to external sulfate attack. I: formulation. J. Mat. Civil Eng. 15, 305–313 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Chalupecký.

About this article

Cite this article

Chalupecký, V., Muntean, A. Semi-discrete finite difference multiscale scheme for a concrete corrosion model: a priori estimates and convergence. Japan J. Indust. Appl. Math. 29, 289–316 (2012). https://doi.org/10.1007/s13160-012-0060-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-012-0060-6

Keywords

Mathematics Subject Classification (2000)

Navigation