Skip to main content
Log in

A note on the dqds algorithm with Rutishauser’s shift for singular values

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider the behavior of the dqds algorithm with Rutishauser’s shift for computing singular values of matrices. In our previous paper Aishima et al. (Jpn J Ind Appl Math 25:65–81, 2008), it has been proved that the algorithm asymptotically achieves cubic convergence; i.e., possibly after some “transient” period with seemingly random shift choices, the system finally reaches its final phase of convergence, where Rutishauser’s shift is chosen continuously and the convergence becomes cubic. In actual numerical examples, however, often the situation is far simpler. Once Rutishauser’s shift becomes valid, it is continuously chosen, and we find no such “transient” phase in practice. In this paper we give a theoretical explanation for the phenomenon, to fill the gap between the numerical observation and the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aishima K., Matsuo T., Murota K.: Rigorous proof of cubic convergence for the dqds algorithm for singular values. Jpn. J. Ind. Appl. Math. 25, 65–81 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aishima K., Matsuo T., Murota K., Sugihara M.: On convergence of the dqds algorithm for singular value computation. SIAM J. Matrix Anal. Appl. 30, 522–537 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aishima K., Matsuo T., Murota K., Sugihara M.: Superquadratic convergence of DLASQ for computing matrix singular values. J. Comput. Appl. Math. 234, 1179–1187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aishima K., Matsuo T., Murota K., Sugihara M.: A survey on convergence theorems of the dqds algorithm for computing singular values. J. Math. Ind. 2, 1–11 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Aishima, K., Matsuo, T., Murota, K., Sugihara, M.: A shift strategy for superquadratic convergence in the dqds algorithm for singular values (submitted)

  6. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., Mckenny, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. SIAM, Philadelphia (1999)

  7. Demmel, J.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)

  8. Dhillon, I.S.: A new O(n 2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem, Ph. D thesis, Computer Science Division, University of California, Berkeley, California (1997)

  9. Dhillon I.S., Parlett B.N.: Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices. Linear Algebra Appl. 387, 1–28 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dhillon I.S., Parlett B.N.: Orthogonal eigenvectors and relative gaps. SIAM J. Matrix Anal. Appl. 25, 858–899 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fernando K.V., Parlett N.B.: Accurate singular values and differential qd algorithms. Numerische Mathematik. 67, 191–229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Golub G.H., Van Loan C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  13. Henrici P.: Applied and Computational Complex Analysis, vol. 1. Wiley, New York (1974)

    MATH  Google Scholar 

  14. Kimura, K., Takata, M., Tsuboi, H., Nakamura, Y.: Some lower bounds formulas of the smallest singular value. In: Proceedings of 2007 annual meeting of JSIAM, pp. 230–231 (in Japanese, 2007)

  15. LAPACK, http://www.netlib.org/lapack/

  16. Marques, O., Vömel, C., Demmel, J., Parlett, B.: Algorithm 880—a testing infrastructure for LAPACK’s symmetric eigensolvers, ACM Trans. Math. Softw. 35(8) (2008)

  17. Parlett B.N.: The New qd algorithm. Acta Numerica. 4, 459–491 (1995)

    Article  MathSciNet  Google Scholar 

  18. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, New Jersey, 1980; SIAM, Philadelphia (1998)

  19. Parlett B.N., Marques O.: An implementation of the dqds algorithm (positive case). Linear Algebra Appl. 309, 217–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rutishauser H.: Über eine kubisch konvergente Variante der LR-Transformation. Zeitschrift für Angewandte Mathematik und Mechanik. 11, 49–54 (1960)

    Google Scholar 

  21. Wilkinson J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

  22. Yamamoto, Y., Kimura, K., Nakamura, Y.: Asymptotic convergence analysis of various shifting strategies for singular value computation. In: Proceedings of 2007 annual meeting of JSIAM, pp. 136–137 (in Japanese, 2007)

  23. Yamamoto, Y., Miyata, T.: On convergence of dqds algorithm that uses Ostrowski and Brauer type lower bounds as shifts, Trans. Jpn. Soc. Ind. Appl. Math. 18:107–134 (in Japanese, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Aishima.

About this article

Cite this article

Aishima, K., Matsuo, T. & Murota, K. A note on the dqds algorithm with Rutishauser’s shift for singular values. Japan J. Indust. Appl. Math. 28, 251–262 (2011). https://doi.org/10.1007/s13160-011-0037-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-011-0037-x

Keywords

Mathematics Subject Classification (2000)

Navigation