Skip to main content

Advertisement

Log in

Analyzing facial expressions with fuzzy quantification theory II: indefinite generalized eigenvalue problem

  • Original Paper
  • Area 3
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Machine understanding of human interactive behaviour is a challenging task. In this paper, facial expressions are used to induce emotions on a group of subjects and sense fuzzy human interactive behaviour. When fuzzy quantification theory II is used to analyze the emotions induced by facial expressions, the relationship between induced emotions and facial features is linearized by solving a dense generalized eigenvalue problem. As the matrices are ill-conditioned and indefinite when small data set of facial expressions is used, the theory describing the possible solutions of the eigenvalue problem gets complicated. This paper proposes a perturbation of the eigenvalue problem by using the Moore–Penrose pseudoinverse that keeps the error bounds of the solution within the error bounds of the widely used GUPTRI algorithm. Experimental results show that GUPTRI algorithm fails in some cases where the number of samples is very small while the solution provided by proposed approach never fails and is more accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pantic, M., Bartlett, M.S.: Machine analysis of facial expressions. In: White, D.A., Sofge, D.A. (eds.) Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, Chap. 20. I-Tech, Viena (2007)

  2. Kitaoka T., Diago L.A., Hagiwara I.: Definition, detection and generation of Iyashi expressions. JSME J. Comput. Sci. Technol. 2(4), 413–422 (2008)

    Article  Google Scholar 

  3. Diago L.A., Kitaoka T., Hagiwara I.: Development of a system for automatic facial expression analysis. JSME J. Comput. Sci. Technol. 2(4), 401–412 (2008)

    Article  Google Scholar 

  4. Diago, L.A., Kitaoka, T., Hagiwara, I.: Analyzing KANSEI from facial expressions with fuzzy quantification theory II. In: Proceedings of 18th IEEE International Conference on Fuzzy Systems, ICC Jeju, Jeju Island, Korea, 20–24 Aug 2009, pp. 1591–1596 (2009)

  5. Sutherland J.G.: Holographic model of memory, learning and expression. Int. J. Neural Syst. 1, 256–267 (1990)

    Article  Google Scholar 

  6. Sugeno, M.: Theory of Fuzzy Integrals and its Applications, PhD dissertation, Tokyo Institute of Technology, Japan (1974)

  7. Watada, J.: Fuzzy quantification theory. In: Terano, T., Asai, K., Sugeno, M. (eds.) Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, Chap. 6, pp. 101–123. Academic Press, Boston (1992)

  8. Stewart, G.W.: Matrix Algorithms. Vol. II: Eigensystems. Society for Industrial and Applied Mathematics, p. 469 (2001)

  9. Kronecker, L.: Algebraische Reduction der Schaaren Bilinearer Formen, pp. 763–766. S.B. Akad. (1890)

  10. Demmel J., Kagstrom B.: The generalized Schur decomposition of an arbitrary pencil: robust software with error bounds and applications. Part I: Theory and algorithms. ACM Trans. Math. Softw. 19(2), 160–174 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Demmel J., Kagstrom B.: The generalized Schur decomposition of an arbitrary pencil: robust software with error bounds and applications. Part II: Software and applications. ACM Trans. Math. Softw. 19(2), 175–201 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lucas, C.: Algorithms for Cholesky and QR Factorizations, and the Semidefinite Generalized Eigenvalue Problem. PhD Dissertation, The University of Manchester, UK (2004)

  13. Courrieu P.: Fast computation of Moore–Penrose inverse matrices. Neural Inf. Process. Lett. Rev. 8(2), 25–29 (2005)

    Google Scholar 

  14. Guyon I., Elisseeff A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    Article  MATH  Google Scholar 

  15. Higham D.J., Higham N.J.: Structured backward error and condition of generalized eigenvalue problems. SIAM J. Matrix Anal. Appl. 20(2), 497–512 (1998)

    Article  MathSciNet  Google Scholar 

  16. Dolan E.D., More J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wright T.G., Trefethen L.N.: Large-scale computation of pseudospectra using ARPACK and Eigs. SIAM J. Sci. Comp. 23, 591–605 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Okuhara K., Tanaka T., Sakawa M.: Cultivation environment evaluation and kind selection system for crops using the method II of fuzzy quantification (in Japanese). Trans. IEICE J85-A(8), 887–894 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Hagiwara.

About this article

Cite this article

Diago, L.A., Kitaoka, T., Hagiwara, I. et al. Analyzing facial expressions with fuzzy quantification theory II: indefinite generalized eigenvalue problem. Japan J. Indust. Appl. Math. 28, 153–170 (2011). https://doi.org/10.1007/s13160-011-0035-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-011-0035-z

Keywords

Mathematics Subject Classification (2000)

Navigation